14.已知數(shù)列{an}中,a1=1,an=an-1+$\frac{1}{2}$(n≥2),則數(shù)列{an}的前9項(xiàng)和等于27.

分析 通過an=an-1+$\frac{1}{2}$(n≥2)可得公差,進(jìn)而由求和公式即得結(jié)論.

解答 解:∵an=an-1+$\frac{1}{2}$(n≥2),
∴an-an-1=$\frac{1}{2}$(n≥2),
∴數(shù)列{an}的公差d=$\frac{1}{2}$,
又a1=1,
∴an=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴S9=9a1+$\frac{9×(9-1)}{2}$•d=9+36×$\frac{1}{2}$=27,
故答案為:27.

點(diǎn)評(píng) 本題考查等差數(shù)列的求和,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x2-ax+b.
(Ⅰ)討論函數(shù)f(sinx)在(-$\frac{π}{2}$,$\frac{π}{2}$)內(nèi)的單調(diào)性并判斷有無極值,有極值時(shí)求出最值;
(Ⅱ)記f0(x)=x2-a0x+b0,求函數(shù)|f(sinx)-f0(sinx)|在[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值D;
(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b-$\frac{{a}^{2}}{4}$滿足條件D≤1時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7,問:b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記∠BOP=x.將動(dòng)點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則y=f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,O為等腰三角形ABC內(nèi)一點(diǎn),⊙O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高AD交于點(diǎn)G,且與AB,AC分別相切于E,F(xiàn)兩點(diǎn).
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2$\sqrt{3}$,求四邊形EBCF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是{a|a<0或a>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:”今有委米依垣內(nèi)角,下周八尺,高五尺.問:積及為米幾何?“其意思為:”在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?“已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有(  )
A.14斛B.22斛C.36斛D.66斛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}滿足:a1+2a2+…nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N+
(1)求a3的值;
(2)求數(shù)列{an}的前 n項(xiàng)和Tn
(3)令b1=a1,bn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)an(n≥2),證明:數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn<2+2lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB和BC分別與圓O相切于點(diǎn)D、C,AC經(jīng)過圓心O,且BC=2OC.
求證:AC=2AD.

查看答案和解析>>

同步練習(xí)冊答案