【題目】設(shè)復(fù)平面,分別對(duì)應(yīng)復(fù)數(shù),已知,且為常數(shù)).
(1)設(shè),用數(shù)學(xué)歸納法證明:;
(2)寫出數(shù)列的通項(xiàng)公式;
(3)求.
【答案】(1) 證明見解析;(2);(3)
【解析】
(1)根據(jù)數(shù)學(xué)歸納法證明過(guò)程,先證明當(dāng)時(shí)等式成立,再假設(shè)當(dāng)時(shí)等式成立,來(lái)證明時(shí)成立即可.
(2)將復(fù)數(shù)化簡(jiǎn)可得,根據(jù)等比數(shù)列定義可知公比.進(jìn)而由等比數(shù)列通項(xiàng)公式即可求得數(shù)列的通項(xiàng)公式;
(3)根據(jù)題意先求得及,再求得與,由數(shù)列的性質(zhì)即可求得的值.
(1)證明:當(dāng)時(shí),等式左邊
等式右邊
左邊=右邊
所以當(dāng)時(shí)等式成立
假設(shè)當(dāng)是等式成立,即
則當(dāng)時(shí)
即當(dāng)時(shí)等式也成立
綜上可知,對(duì)于,等式成立
(2)因?yàn)?/span>
且為常數(shù)
所以數(shù)列是以首項(xiàng),公比的等比數(shù)列
所以數(shù)列的通項(xiàng)公式為
(3)因?yàn)?/span>
所以
而
所以
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個(gè),從中任取2個(gè)球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個(gè)球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個(gè)球在每一次被摸出的機(jī)會(huì)都是等可能的,用X表示摸球終止時(shí)所需摸球的次數(shù).
(1)求隨機(jī)變量X的分布列和均值E(X);
(2)求甲摸到白色球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.
(1)求證:AD⊥PB;
(2)求點(diǎn)C到平面PAB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的分布列和數(shù)學(xué)期望.
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于集合A,定義了一種運(yùn)算“”,使得集合A中的元素間滿足條件:如果存在元素,使得對(duì)任意,都有,則稱元素e是集合A對(duì)運(yùn)算“”的單位元素.例如:,運(yùn)算“”為普通乘法;存在,使得對(duì)任意,都有,所以元素1是集合R對(duì)普通乘法的單位元素.下面給出三個(gè)集合及相應(yīng)的運(yùn)算“”:
①,運(yùn)算“”為普通減法;
②,運(yùn)算“”為矩陣加法;
③(其中M是任意非空集合),運(yùn)算“”為求兩個(gè)集合的交集.
其中對(duì)運(yùn)算“”有單位元素的集合序號(hào)為( 。
A. ①②B. ①③C. ①②③D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說(shuō)明理由;
(3)設(shè)是無(wú)窮數(shù)列,已知.求證:“對(duì)任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中有5只同型號(hào)的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請(qǐng)用“列舉法”解答下列問(wèn)題:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,拋物線的焦點(diǎn)是,是拋物線上的點(diǎn),H為直線上任一點(diǎn),A,B分別為橢圓C的上下頂點(diǎn),且A,B,H三點(diǎn)的連線可以構(gòu)成三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線HA,HB與橢圓C的另一交點(diǎn)分別為點(diǎn)D,E,求證:直線DE過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com