17.設(shè)i是虛數(shù)單位,則復(fù)數(shù)1-2i+3i2-4i3等于( 。
A.-2-6iB.-2+2iC.4+2iD.4-6i

分析 直接利用復(fù)數(shù)單位的冪運(yùn)算,化簡求解即可.

解答 解:復(fù)數(shù)1-2i+3i2-4i3=復(fù)數(shù)1-2i-3+4i=-2+2i.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的冪運(yùn)算,復(fù)數(shù)的基本概念的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{1-3x,x>0}\end{array}\right.$,若f(2a2-3)>f(5a),則實(shí)數(shù)a的取值范圍是(-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求證:平面MQB⊥平面PAD;
(2)若滿足BM⊥PC,求異面直線AP與BM所成角的余弦值;
(3)若二面角M-BQ-C大小為30°,求QM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)對于任意正實(shí)數(shù)x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)求證:當(dāng)a>3時(shí),對于任意正實(shí)數(shù)x,不等式f(a+x)<f(a)•ex恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)z滿足1+i+(1+i)2z=(1-i)2,則復(fù)數(shù)z的虛部為( 。
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如下表:
時(shí)間周一周二周三周四周五
車流量x(萬輛)5051545758
PM2.5的濃度y(微克/立方米)6970747879
(Ⅰ)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若周六同一時(shí)間段車流量是25萬輛,試根據(jù)(Ⅰ)求出的線性回歸方程預(yù)測,此時(shí)PM2.5的濃度為多少(保留整數(shù))?
(參考公式:$\hat b=\frac{{\sum_{i=1}^5{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}}},\overline y=\hat b•\overline x+\hat a$,參考數(shù)據(jù):$\sum_{i=1}^5{x_i}=270,\sum_{i=1}^5{y_i}=370$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項(xiàng)和,則$\frac{{S}_{3}-{S}_{2}}{{S}_{5}-{S}_{3}}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)M是△ABC的重心,若A=$\frac{π}{3}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$,則$|\overrightarrow{AM}|$的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)定義如下表
 x 1 2 3 4 5
 f(x) 1 4 2 5 3
定義數(shù)列{an}:a0=5,an+1=f(an),n∈N
(1)求a6的值;
(2)求a1+a2+…+a2013的值.

查看答案和解析>>

同步練習(xí)冊答案