【題目】如圖,在四棱錐P-ABCD中,已知底面ABCD是邊長(zhǎng)為1的正方形,側(cè)面PAD⊥平面ABCD,PA=PD,PA與平面PBC所成角的正弦值為。
(1)求側(cè)棱PA的長(zhǎng);
(2)設(shè)E為AB中點(diǎn),若PA≥AB,求二面角B-PC-E的余弦值.
【答案】(1)或.(2)
【解析】
(1)取AD中點(diǎn)O.BC中點(diǎn)M,連結(jié)OP,OM,證得以O為原點(diǎn)OA,OM,OP為x,y,Z軸建立空間直角坐標(biāo)系,求得平面PBC的一個(gè)法向量,利用向量的夾角公式,即可求解。
(2)由(1)知,得平面PBC的一個(gè)法向量為,再求得平面PCE的一個(gè)法向量為,利用向量的夾角公式,即可求解二面角的余弦值。
解:(1)取AD中點(diǎn)O.BC中點(diǎn)M,連結(jié)OP,OM,
因?yàn)?/span>PA=PD,所以
又因?yàn)槠矫?/span>PAD⊥平面ABCD,OP平面PAD.平
面平面ABCD=AD,所以O(shè)P⊥平面ABCD
所以
又因?yàn)锳BCD是正方形,所以,
以O為原點(diǎn)OA,OM,OP為x,y,Z軸建立空間直角
坐標(biāo)系O-xyz(如圖),
則,
設(shè),則,
設(shè)平面PBC的一個(gè)法向量為,
則有取,則,從而
設(shè)PA與平面PBC所成角為,因?yàn)?/span>
所以
解得或.所以或.
(2)由(1)知,,所以,
由(1)知,平面PBC的一個(gè)法向量為,
設(shè)平面PCE的一個(gè)法向量為,而,
所以取,則,即
設(shè)二面角B-PC-E的平面角為,
所以,
根據(jù)圖形得為銳角,所以二面角B-PC-E的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中a,.
(1)若函數(shù)在處取得極小值,求a,b的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若函數(shù)在上只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)滿(mǎn)足:(1);(2);(3)時(shí),.則大小關(guān)系
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm.
(I)按下列要求寫(xiě)出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科.山東省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,每門(mén)科目滿(mǎn)分均為150分.另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(6選3),每門(mén)科目滿(mǎn)分均為100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1100名學(xué)生(其中男生600人,女生500人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查,其中女生抽取50人.
(1)求n的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的n名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在“物理”和“地理”這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的一個(gè)不完整的2×2列聯(lián)表,請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 30 | ||
合計(jì) |
(3)按(2)中選“物理”的男生女生的比例進(jìn)行分層抽樣,從選“物理”的學(xué)生中抽出8名學(xué)生,再?gòu)倪@8名學(xué)生中抽取3人組成物理興趣小組,設(shè)這3人中女生的人數(shù)為X,求X的概率分布列及數(shù)學(xué)期望.
附
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知焦點(diǎn)在x軸上,離心率為的橢圓E的左頂點(diǎn)為A,點(diǎn)A到右準(zhǔn)線(xiàn)的距離為6.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A且斜率為的直線(xiàn)與橢圓E交于點(diǎn)B,過(guò)點(diǎn)B與右焦點(diǎn)F的直線(xiàn)交橢圓E于M點(diǎn),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓M:(a>b>0)的離心率為,左右頂點(diǎn)分別為A,B,線(xiàn)段AB的長(zhǎng)為4.P在橢圓M上且位于第一象限,過(guò)點(diǎn)A,B分別作l1⊥PA,l2⊥PB,直線(xiàn)l1,l2交于點(diǎn)C.
(1)若點(diǎn)C的橫坐標(biāo)為﹣1,求P點(diǎn)的坐標(biāo);
(2)直線(xiàn)l1與橢圓M的另一交點(diǎn)為Q,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,,,為的中點(diǎn).
(1)證明:;
(2)若,點(diǎn)在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com