【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為

(1)求橢圓的標準方程;

(2)設直線軸于點,當點均在軸右側(cè),且時,求直線的方程.

【答案】(1)(2)

【解析】試題分析:(1)先求直線的方程,即得B坐標,有;再將N坐標代入橢圓方程解得a(2)設直線的斜率為,解得P點坐標,根據(jù)中點坐標公式得Q,利用直線方程與橢圓方程聯(lián)立方程組解得M,N,根據(jù)橫坐標之間比例關(guān)系求k,即得直線的方程.

試題解析:解:(1)由,得直線的方程為

,得點的坐標為

所以橢圓的方程為

將點的坐標代入,得,解得

所以橢圓的標準方程為

(2)方法一:設直線的斜率為,則直線的方程為

中,令,得,而點是線段的中點,所以

所以直線的斜率

聯(lián)立,消去,得,解得

,得

,所以,得

,又,解得

所以直線的方程為

方法二:設點的坐標分別為

,得直線的方程為,令,得

同理,得

而點是線段的中點,所以,故

,所以,得,從而,

解得

代入到橢圓C的方程中,得

,所以,即,

解得(舍)或.又,所以點的坐標為

故直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動點在棱上,試確定點的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線與直線垂直,橢圓經(jīng)過點

(1)求橢圓的標準方程;

(2)過點作橢圓的兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.

(1)求f(x)的解析式;

(2)k為何值時,方程f(x)-k=0只有1個根

(3)設函數(shù)g(x)=x2-2ax+a,若對于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為圓柱的母線, 是底面圓的直徑, 的中點.

(Ⅰ)問: 上是否存在點使得平面?請說明理由;

(Ⅱ)在(Ⅰ)的條件下,若平面,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐外會有被捕的危險,求小魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一矩形硬紙板材料(厚度忽略不計),一邊長為6分米,另一邊足夠長.現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點,

(1)當長為1分米時,求折卷成的包裝盒的容積;

(2)當的長是多少分米時,折卷成的包裝盒的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓上每個點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線,以坐標原點為極點, 軸的非負軸分別交于半軸為極軸建立極坐標系,直線的極坐標方程為: ,且直線在直角坐標系中與軸分別交于兩點.

1)寫出曲線的參數(shù)方程,直線的普通方程;

2)問在曲線上是否存在點,使得的面積若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù).時, .

(1) 求曲線在點處的切線方程;

(2) 若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關(guān)鍵比賽的部分數(shù)據(jù)統(tǒng)計.兩位選手在此次比賽中擊球所使用的各項技術(shù)的比例統(tǒng)計如圖1.在乒乓球比賽中,接發(fā)球技術(shù)是指回接對方發(fā)球時使用的各種方法.選手乙在比賽中的接發(fā)球技術(shù)統(tǒng)計如表1,其中的前4項技術(shù)統(tǒng)稱反手技術(shù),后3項技術(shù)統(tǒng)稱為正手技術(shù).

圖1

選手乙的接發(fā)球技術(shù)統(tǒng)計表

技術(shù)

反手擰球

反手搓球

反手拉球

反手撥球

正手搓球

正手拉球

正手挑球

使用次數(shù)

20

2

2

4

12

4

1

得分率

55%

50%

0%

75%

41.7%

75%

100%

表1

(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術(shù)中,差異最為顯著的是哪兩項技術(shù)?

(Ⅱ)乒乓球接發(fā)球技術(shù)中的拉球技術(shù)包括正手拉球和反手拉球.從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?

(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認為選手乙的反手技術(shù)更穩(wěn)定還是正手技術(shù)更穩(wěn)定?(結(jié)論不要求證明)

查看答案和解析>>

同步練習冊答案