5.隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國民在旅游休閑方面的投入不斷增多,民眾對(duì)旅游的需求也在不斷提高.某村村委會(huì)統(tǒng)計(jì)了2011到2015年五年間每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)數(shù)據(jù)如表所示:
年份(x)20112012201320142015
家庭數(shù)(y) 610182226
(1)從這5年中隨機(jī)抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個(gè)的概率;
(2)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\widehat y$=bx+a,
并判斷它們之間是正相關(guān)還是負(fù)相關(guān);
(3)利用(2)中所求出的直線方程估計(jì)該村2018年在春節(jié)期間外出游泳的家庭數(shù).
參考:用最小二乘法求線性回歸方程系數(shù)公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.

分析 (1)使用列舉法求出所有基本事件的個(gè)數(shù)和至少有一年多余20人的事件數(shù),使用古典概型的概率公式求出概率;
(2)根據(jù)相關(guān)系數(shù)公式求出相關(guān)系數(shù),得出回歸方程;
(3)將x=2018代入回歸方程計(jì)算.

解答 解:(1)從這5年中任意抽取兩年,所有的事件有:
(2011,2012),(2011,2013),(2011,2014),(2011,2015),(2012,2013),
(2012,2014),(2012,2015),(2013,2014),(2013,2015),(2014,2015)共10種,
至少有1年多于20人的事件有:
(2011,2014),(2011,2015),(2012,2014),(2012,2015),
(2013,2014),(2013,2015),(2014,2015)共7種,
則至少有1年多于10人的概率為P=$\frac{7}{10}$.
(2)由已知數(shù)據(jù)得$\overline{x}$=2013,$\overrightarrow{y}$=16,
$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=-2×(-10)+(-1)×(-6)+1×6+2×10=52,
$\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}$=(-1)2+(-2)2+12+22=10,
∴$\stackrel{∧}$=$\frac{52}{10}=5.2$,$\stackrel{∧}{a}$=16-5.2×2013=-10451.6,
∴回歸直線的方程為y=5.2x-10451.6,
∴y與x是正相關(guān)關(guān)系.
(3)當(dāng)x=2018時(shí),y=5.2×2018-10451.6=42.
∴該村2018年在春節(jié)期間外出游泳的家庭數(shù)約為42.

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算,線性回歸方程的解法及數(shù)值估計(jì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R.
(1)若函數(shù)f(x)=|2x-1|+|2x-3|的最小值,并求取的最小值時(shí)x的取值范圍;
(2)若g(x)=$\frac{1}{f(x)+m}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點(diǎn).
(1)求證:AB⊥C1F;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知正項(xiàng)數(shù)列{an}滿足an+1(an+1-2an)=9-a${\;}_{n}^{2}$,若a1=1,則a10=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{a{{(x-1)}^2}+1,}&{x≥0}\\{{2^{-x}},}&{x<0}\end{array}}\right.$
①若f(f(-1))=0,則實(shí)數(shù)a=-1;
②在①的條件下,若直線y=m與y=f(x)的圖象有且只有一個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖.

(Ⅰ)試估計(jì)使用A款訂餐軟件的50個(gè)商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);
(Ⅱ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答以下問題:
(ⅰ)能否認(rèn)為使用B款訂餐軟件“平均送達(dá)時(shí)間”不超過40分鐘的商家達(dá)到75%?
(ⅱ)如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有7位歌手(1至7號(hào))參加一場歌唱比賽,由550名大眾評(píng)委現(xiàn)場投票決定歌手名次,根據(jù)年齡將大眾評(píng)委分為5組,各組的人數(shù)如下:
組別ABCDE
人數(shù)5010020015050
(Ⅰ) 為了調(diào)查大眾評(píng)委對(duì)7位歌手的支持狀況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組中抽取了6人.請(qǐng)將其余各組抽取的人數(shù)填入表.
組別ABCDE
人數(shù)5010020015050
抽取人數(shù)6
(Ⅱ) 在(Ⅰ)中,若A,C兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從六個(gè)數(shù)1,3,4,6,7,9中任取4個(gè)數(shù),則這四個(gè)數(shù)的平均數(shù)是5的概率為( 。
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)z滿足$\frac{z}{1-i}=i$,其中i為虛數(shù)單位,則z=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

同步練習(xí)冊(cè)答案