把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號五個數(shù)…如此下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第104個括號內(nèi)各數(shù)字之和為   
【答案】分析:括號中的數(shù)字個數(shù),依次為1、2、3、4,組成成首項為1,公差為1的等差數(shù)列,可先計算出前103個括號中的數(shù)的個數(shù),得到第104個括號中第一個數(shù),再由等差數(shù)列求和公式求第104個括號內(nèi)各數(shù)字之和
解答:解:由題意知,數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號五個數(shù),故前103個括號內(nèi)共有=72×103個數(shù)、
∴第104個括號內(nèi)第一個數(shù)是2×(72×103+1)+1=104×103+3,第104個括號內(nèi)各數(shù)字組成公差是2,項數(shù)為104的等差數(shù)列
∴第104個括號內(nèi)各數(shù)字之和為104×(104×103+3)+=1125072
點評:復(fù)習(xí)的任務(wù)在于對知識的深化,對能力的提高,關(guān)鍵在落實.根據(jù)上面所研究的問題,進一步提高運用函數(shù)的思想、方程的思想解決數(shù)列問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),…,循環(huán)分為:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,則第60個括號內(nèi)各數(shù)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號五個數(shù)…如此下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第104個括號內(nèi)各數(shù)字之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù)…循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第14個括號內(nèi)的各數(shù)字之和
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按一項、二項、三項、四項循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100個括號內(nèi)各數(shù)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),第六個括號兩個數(shù),…,循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),…,則第104個括號內(nèi)各數(shù)字之和為
2072
2072

查看答案和解析>>

同步練習(xí)冊答案