5.已知數(shù)列{an}前n項(xiàng)和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)$bn=\frac{2}{{{{log}_3}{a_n}•{{log}_3}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<2.

分析 (1)根據(jù)數(shù)列的遞推公式和對(duì)數(shù)的運(yùn)算性質(zhì)即可求出數(shù)列{an}的通項(xiàng)公式,
(2)利用裂項(xiàng)求和即可求出數(shù)列{bn}的前n項(xiàng)和Tn,再放縮證明即可.

解答 解:(1)2Sn+an=1,2Sn+1+an+1=1,
∴2an+1+an+1=an,
∴3an+1=an
又2S1+a1=1,
∴a1=$\frac{1}{3}$,
∴{an}是以$\frac{1}{3}$為首項(xiàng),以$\frac{1}{3}$為公比的等比數(shù)列,
∴an=($\frac{1}{3}$)n
(2)證明:$bn=\frac{2}{{{{log}_3}{a_n}•{{log}_3}{a_{n+1}}}}$=$\frac{2}{(-n)•[-(n+1)]}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$)
∴Tn=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]=2(1-$\frac{1}{n+1}$)<2.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式和裂項(xiàng)求和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知sin2α-2=2cos2α,則sin2α+sin2α=1或$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.實(shí)驗(yàn)測(cè)得四組數(shù)對(duì)(x,y)的值為(1,2),(2,5),(4,7),(5,10),則y與x之間的回歸直線方程可能是( 。
A.$\hat y=x+3$B.$\hat y=x+4$C.$\hat y=2x+3$D.$\hat y=2x+4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|kx-1|.
(Ⅰ)若f(x)≤3的解集為[-2,1],求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=1時(shí),若對(duì)任意x∈R,不等式f(x+2)-f(2x+1)≤3-2m都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面ABB1A1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為$\frac{π}{6}$,請(qǐng)問(wèn)在線段A1C上是否存在點(diǎn)E,使得二面角A-BE-C的大小為$\frac{2π}{3}$,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.將函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的圖象向右平移$\frac{π}{4ω}$個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上為增函數(shù),則ω的最大值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間(0,4)上任取一實(shí)數(shù)x,則2x<2的概率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓O:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)($\sqrt{3}$,-$\frac{1}{2}$),A(x0,y0)(x0y0≠0),其上頂點(diǎn)到直線$\sqrt{3}$x+y+3=0的距離為2,過(guò)點(diǎn)A的直線l與x,y軸的交點(diǎn)分別為M、N,且$\overrightarrow{AN}$=2$\overrightarrow{MA}$.
(1)證明:|MN|為定值;
(2)如圖所示,若A,C關(guān)于原點(diǎn)對(duì)稱,B,D關(guān)于原點(diǎn)對(duì)稱,且$\overrightarrow{BD}$=λ$\overrightarrow{NM}$,求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案