20.在平行四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{BD}$C.$\overrightarrow{CA}$D.$\overrightarrow{DB}$

分析 利用向量平行四邊形法則即可得出.

解答 解:由向量平行四邊形法則可得:$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{AC}$,
故選:A.

點評 本題考查了向量平行四邊形法則,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合中三個元素為邊可構成一個三角形,則該三角形一定不可能是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知傾斜角60°為的直線l平分圓:x2+y2+2x+4y-4=0,則直線l的方程為(  )
A.$\sqrt{3}$x-y+$\sqrt{3}$+2=0B.$\sqrt{3}$x+y+$\sqrt{3}$+2=0C.$\sqrt{3}$x-y+$\sqrt{3}$-2=0D.$\sqrt{3}$x-y-$\sqrt{3}$+2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知圓心在直線x+y-1=0上且過點A(2,2)的圓C1與直線3x-4y+5=0相切,其半徑小于5.
(1)若C2圓與圓C1關于直線x-y=0對稱,求圓C2的方程;
(2)過直線y=2x-6上一點P作圓C2的切線PC,PD,切點為C,D,當四邊形PCC2D面積最小時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{m{x^2}+ax}}{{1+{x^2}}}$是奇函數(shù).
(1)求m的值;
(2)若f(x)=$\frac{{m{x^2}+ax}}{{1+{x^2}}}$在(1,+∞)上遞減,根據(jù)單調性的定義求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知直線y=k(x-2)與拋物線$Γ:{y^2}=\frac{1}{2}x$相交于A,B兩點,M是線段AB的中點,過M作y軸的垂線交Γ于點N.
(Ⅰ)證明:拋物線Γ在點N處的切線與AB平行;
(Ⅱ)是否存在實數(shù)k使$\overrightarrow{NA}•\overrightarrow{NB}=0$?若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知數(shù)列{an}的前n項和為Sn,Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn,若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是(-∞,-5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列命題中正確的個數(shù)是( 。
①有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
②有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
③若有兩個側面垂直于底面,則該四棱柱為直四棱柱
④圓臺所有的軸截面是全等的等腰梯形.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示(其中正視圖的弧線為四分之一圓周),則該幾何體的表面積為(  )
A.72+6πB.72+4πC.48+6πD.48+4π

查看答案和解析>>

同步練習冊答案