如圖所示,在△ABC中,AD是高線(xiàn),CE是中線(xiàn),DC=BE,DG⊥CE于G,EC的長(zhǎng)為8,則EG=
 
考點(diǎn):三角形中的幾何計(jì)算
專(zhuān)題:解三角形
分析:由Rt△ABD中,DE為斜邊AB的中線(xiàn),可得DE=DC,所以△CDE為等腰三角形.
解答: 解:連接DE,在Rt△ABD中,DE為斜邊AB的中線(xiàn),
所以DE=
1
2
AB=BE=DC
.又DE=DC,DG⊥CE于G,
∴DG平分EC,故EG=4.
點(diǎn)評(píng):本題主要考查了解三角形的應(yīng)用.解題的關(guān)鍵是判斷出三角形EDC為等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線(xiàn)y2=4x的焦點(diǎn),M是這條拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),P(4,1)是一個(gè)定點(diǎn),則|MP|+|MF|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)(k+1)x+(k+2)y-2=0與兩坐標(biāo)軸圍成的三角形面積為Sk,則S1+S2+…+S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的邊長(zhǎng)a,b,c滿(mǎn)足a≤b≤c,記k=min{
b
a
,
c
b
},則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲、乙兩名同學(xué)在五次數(shù)學(xué)測(cè)驗(yàn)中的得分如莖葉圖,則甲、乙兩名同學(xué)數(shù)學(xué)學(xué)習(xí)成績(jī)( 。
A、甲比乙穩(wěn)定
B、甲、乙穩(wěn)定程度相同
C、乙比甲穩(wěn)定
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿(mǎn)足f(x+2)=2f(x)+x,且當(dāng)0≤x<2時(shí),f(x)=[x]([x]表示不超過(guò)x的最大整數(shù)),則f(5.5)=(  )
A、8.5B、10.5
C、12.5D、14.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα<0,tan2α>0,則在(0,π)內(nèi),α的取值范圍是( 。
A、(0,
π
4
B、(
π
2
,
4
C、(
4
,π)
D、(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出四個(gè)函數(shù),分別滿(mǎn)足①f(x+y)=f(x)+f(y);②g(x+y)=g(x)•g(y);③ϕ(x•y)=ϕ(x)+ϕ(y);④ω(x•y)=ω(x)•ω(y),又給出四個(gè)函數(shù)的圖象如下:
則正確的配匹方案是( 。
A、①-M  ②-N  ③-P  ④-Q
B、①-N  ②-P  ③-M  ④-Q
C、①-P  ②-M  ③-N  ④-Q
D、①-Q  ②-M  ③-N  ④-P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
A、若a>b>1,c<0,則ae>be
B、若|a|>b,則a2>b2
C、?x0∈R,x0+
1
x0
=1
D、若a>0,b>0且a+b=1,則
1
a
+
1
b
的最小值為4

查看答案和解析>>

同步練習(xí)冊(cè)答案