3.如圖,已知四邊形ABCD內(nèi)接于半徑為3的圓,且AB是圓的直徑.經(jīng)過(guò)點(diǎn)D的圓的切線與BA的延長(zhǎng)線交于點(diǎn)M.∠BMD的平分線分別交AD,BD于點(diǎn)E,F(xiàn)AC,BD交于點(diǎn)P.
(1)證明:DE=DF
(2)若DM=3$\sqrt{3}$,AP=2CP=2$\sqrt{3}$,求BP的長(zhǎng).

分析 (1)證明:DE=DF,只要證明∠DEF=∠DFE;
(2)先求出∠ABD=30°,BD=ABcos∠ABD=3$\sqrt{3}$,再利用相交弦定理,即可求BP的長(zhǎng).

解答 (1)證明:∵M(jìn)D是切線,AD是弦,
∴∠ADM=∠ABD,
∵∠BMF=∠DMF,
∴∠BMF+∠ABD=∠ADM+∠DMF,
∵∠DEF=∠ADM+∠DMF,∠DFE=∠BMF+∠ABD,
∴∠DEF=∠DFE,
∴DE=DF;
(2)解:連接OD,則
∵M(jìn)D是切線,
∴OD⊥MD,
∵OD=3,MD=3$\sqrt{3}$,
∴∠MOD=60°,∴∠ABD=30°,
Rt△ABD中,AB=6,∴BD=ABcos∠ABD=3$\sqrt{3}$,
∵四邊形ABCD內(nèi)接于圓O,
∴AP•PC=BP•PD,
∴2$\sqrt{3}$×$\sqrt{3}$=BP•(3$\sqrt{3}$-BP),
∴BP=$\sqrt{3}$或2$\sqrt{3}$,
∵BP>CP,∴BP=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查相交弦定理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高二上文周末檢測(cè)三數(shù)學(xué)試卷(解析版) 題型:選擇題

一個(gè)等差數(shù)列的前4項(xiàng)是,,,,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆遼寧莊河市高三9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

當(dāng),滿(mǎn)足不等式組時(shí),恒成立,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)P(1,$\frac{3}{2}$),離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F1、F2分別為橢圓C的左、右焦點(diǎn),過(guò)F2的直線l與橢圓C交于不同兩點(diǎn)M,N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時(shí)直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=x2-ax,g(x)=b+aln(x-1),存在實(shí)數(shù)a(a≥1),使y=f(x)的圖象與y=g(x)的圖象無(wú)公共點(diǎn),則實(shí)數(shù)b的取值范圍為(  )
A.[1,+∞)B.[1,$\frac{3}{4}+ln2$)C.[$\frac{3}{4}+ln2,+∞$)D.(-$∞,\frac{3}{4}+ln2$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知a,b均為正整數(shù),圓x2+y2-2ax+a2(1-b)=0與圓x2+y2-2y+1-a2b=0外切,則ab的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=3x(x∈R)的反函數(shù)為g(x),則g($\frac{1}{2}$)=(  )
A.-log32B.log32C.-log23D.log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆遼寧莊河市高三9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知,,,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,點(diǎn)B是⊙O的半徑OA的中點(diǎn),且CD⊥OA于B,則tan∠CPD的值為( 。?
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案