分析 將a2+b+3=ab化為(2a-2)(b-a-1)=8,再利用基本不等式,求解不等式即可求得a+b的取值范圍,從而得到a+b的最小值.
解答 解:由a2+b+3=ab得a2-2a+1-b(a-1)+2(a-1)=-4,
即(a-1)2-b(a-1)+2(a-1)=-4,
∴(a-1)(a-1-b+2)=-4
∴(2a-2)(b-a-1)=8,
∴8=(2a-2)(b-a-1)≤$(\frac{2a-2+b-a+1}{2})^{2}$=$(\frac{a+b-3}{2})^{2}$
解得a+b≥3+4$\sqrt{2}$,取等號(hào)的條件是2a-2=b-a-1且(2a-2)(b-a-1)=8,解得a=$\sqrt{2}$-1,b=3$\sqrt{2}$,
∴a+b的最小值為3+4$\sqrt{2}$.
故答案為:3+4$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了基本不等式在最值問題中的應(yīng)用.在應(yīng)用基本不等式求最值時(shí)要注意“一正、二定、三相等”的判斷.運(yùn)用基本不等式解題的關(guān)鍵是尋找和為定值或者是積為定值,難點(diǎn)在于如何合理正確的構(gòu)造出定值.屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,9) | B. | (-9,1) | C. | (-∞,-1)∪(9,+∞) | D. | (-∞,-9)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x}{2}$-3<$\frac{x}{3}$-3 | B. | $\left\{\begin{array}{l}{x-2<0}\\{2-3x>1}\end{array}\right.$ | C. | x2-2x>0 | D. | |x-1|<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -1 | 0 | 2 | 3 | 4 |
f(x) | 1 | 2 | 0 | 2 | 0 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com