15.我艦在敵島A處南偏西50°的B處,且A,B距離為12海里,發(fā)現(xiàn)敵艦正離開島沿北偏西10°的方向以每小時(shí)10海里的速度航行.若我艦要用2小時(shí)追上敵艦,則其速度大小為14海里/小時(shí).

分析 由題意推出∠BAC=120°,利用余弦定理求出BC=28,然后推出我艦的速度.

解答 解:依題意,∠BAC=120°,AB=12,AC=10×2=20
在△ABC中,由余弦定理,
得BC2=AB2+AC2-2AB×AC×cos∠BAC=122+202-2×12×20×cos120°=784.
解得BC=28.所以漁船甲的速度為$\frac{BC}{2}$=14海里/小時(shí).
故我艦要用2小時(shí)追上敵艦速度大小為:14海里/小時(shí).
故答案為:14.

點(diǎn)評(píng) 本題是中檔題,考查三角函數(shù)在實(shí)際問(wèn)題中的應(yīng)用,余弦定理的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實(shí)數(shù)t的值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)lg(m2-2m-2)+(m2+3m+2)i分別是
(1)純虛數(shù);    
(2)實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)y=sinωx在[-$\frac{π}{3}$,$\frac{π}{3}}$]上為增函數(shù),則ω的取值范圍( 。
A.(0,3]B.(0,$\frac{3}{2}}$]C.[-3,0)D.[-$\frac{3}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$2\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為150°,則|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如果函數(shù)f(x)=2x2-4(1-a)x+1在區(qū)間[3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若△ABC為銳角三角形,且B=$\frac{π}{3}$,c=2,則邊b的取值范圍是( 。
A.($\sqrt{3}$,3)B.($\sqrt{3}$,2$\sqrt{3}}$)C.(3,2$\sqrt{3}}$)D.($\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-{x}^{4}}}{|x-2|-2}$.給出函數(shù)f(x)下列性質(zhì):
(1)函數(shù)的定義域和值域均為[-1,1];
(2)函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱;
(3)函數(shù)在定義域上單調(diào)遞增;
(4)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則$\sqrt{2}$<|AB|≤2.
請(qǐng)寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號(hào)(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的通項(xiàng)公式為an=cos$\frac{nπ}{2}$,{bn}是等差數(shù)列,cn=an+bn,數(shù)列{cn}的前n項(xiàng)和為Sn,且c10=$\frac{1}{2}$,S8=1.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{c${\;}_{{4}^{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案