14.已知函數(shù)f(x)=3sinx-4cosx(x∈R)的一個(gè)對(duì)稱中心是(x0,0),則tanx0的值為( 。
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

分析 利用輔助角化簡(jiǎn)f(x),一個(gè)對(duì)稱中心是(x0,0),建立關(guān)系,表示出x0,即可求出tanx0的值.

解答 解:函數(shù)f(x)=3sinx-4cosx=5sin(x+θ),其中tanθ=$-\frac{4}{3}$.
∵f(x)的一個(gè)對(duì)稱中心是(x0,0),
∴sin(x0+θ)=0,即x0+θ=kπ,k∈Z.
則x0=kπ-θ.
那么:tanx0=tan(kπ-θ)=-tanθ=$\frac{4}{3}$.
 故選:D.

點(diǎn)評(píng) 本題考查了輔助角公式的靈活運(yùn)用和誘導(dǎo)公式的化解能力.屬于基礎(chǔ)知識(shí)考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(x2-$\sqrt{\frac{2}{x}}$)5的展開式中常數(shù)項(xiàng)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條相互垂直的半徑,若該幾何體的體積是$\frac{28π}{3}$,則三視圖中圓的半徑為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)點(diǎn)F的動(dòng)直線交M于A,B兩點(diǎn),若x軸上的點(diǎn)P(t,0)使得∠APO=∠BPO總成立(O為坐標(biāo)原點(diǎn)),則t=( 。
A.2B.$\sqrt{2}$C.$-\sqrt{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$sin(\frac{π}{3}-α)=\frac{1}{4}$,則$cos(\frac{π}{3}+2α)$=( 。
A.$\frac{5}{8}$B.$-\frac{7}{8}$C.$-\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若點(diǎn)E為AF的中點(diǎn),∠BCD=60°,且BC=CF=2,求四面體BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的圖象過(guò)點(diǎn)($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函數(shù)f(x)在[0,$\frac{π}{2}$]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若x=C是曲線y=f(x)的一條對(duì)稱軸,且△ABC的面積為2$\sqrt{3}$,a+b=6,求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{3}$,cos$\frac{x}{3})$,$\overrightarrow{n}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若a,b,c分別是△ABC的內(nèi)角A,B,C所對(duì)的邊,且a=2,(2a-b)cosC=ccosB,$f(A)=\frac{3}{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在如圖所示的矩形ABCD中,AB=4,AD=2,E為線段BC上的點(diǎn),則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為( 。
A.12B.15C.17D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案