4.在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱(chēng){an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②若數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}是等方差數(shù)列;
③{(-1)n}是等方差數(shù)列;
④若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題的個(gè)數(shù)為(  )
A.4B.3C.2D.1

分析 根據(jù)“等方差數(shù)列”的定義,我們逐一判斷可得答案.

解答 解:∵{an}是等方差數(shù)列,∴an2-an-12=p(p為常數(shù))得到{an2}為首項(xiàng)是a12,公差為p的等差數(shù)列;
∴{an2}是等差數(shù)列,故①正確,②不正確;
數(shù)列{(-1)n}中,an2-an-12=[(-1)n]2-[(-1)n-1]2=0,
∴{(-1)n}是等方差數(shù)列;故③正確;
數(shù)列{an}中的項(xiàng)列舉出來(lái)是,a1,a2,…,ak,…,a2k,…
數(shù)列{akn}中的項(xiàng)列舉出來(lái)是,ak,a2k,…,a3k,…,
∵(ak+12-ak2)=(ak+22-ak+12)=(ak+32-ak+22)=…=(a2k2-a2k-12)=p
∴(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=kp
∴(akn+12-akn2)=kp
∴{akn}(k∈N*,k為常數(shù))是等方差數(shù)列;故④正確.
故選:B.

點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用等差數(shù)列的性質(zhì)及新定義等方差數(shù)列化簡(jiǎn)求值,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且過(guò)點(diǎn)(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)橢圓左頂點(diǎn)A的直線l與橢圓的另一交點(diǎn)為B.與直線x=a交于點(diǎn)P,求$\overrightarrow{OB}$•$\overrightarrow{OP}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)y=$\frac{1}{{x}^{2}+2}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)拋物線上一點(diǎn)A作l的垂線,垂足為B,設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點(diǎn)E,若|CF|=2|AF|,且△ACE的面積為3$\sqrt{2}$,則p的值為(  )
A.$\sqrt{6}$B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若向面積為2的△ABC內(nèi)任取一點(diǎn)P,并連接PB,PC,則△PBC的面積小于1的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,則f($\frac{5}{2}$)=( 。
A.-$\frac{1}{2}$B.-1C.-5D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=$\frac{{a{x^2}+bx+1}}{x+c}$(x≠0,a>0)是奇函數(shù),且當(dāng)x>0時(shí),f(x)有最小值2$\sqrt{2}$.
(1)求f(x)的表達(dá)式;
(2)設(shè)數(shù)列{an}滿足a1=2,2an+1=f(an)-an(n∈N*).令bn=$\frac{{{a_n}-1}}{{{a_n}+1}}$,求證bn+1=bn2;
(3)求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示,一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為4的等邊三角形,俯視圖是一個(gè)圓,那么其體積為( 。
A.$\frac{{4\sqrt{3}}}{3}π$B.$\frac{{8\sqrt{3}}}{3}π$C.$\frac{{\sqrt{3}}}{2}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求下列函數(shù)的定義域
(1)y=$\sqrt{x+2}$+$\frac{1}{x+1}$+(x-1)0
(2)y=$\frac{1}{{1-\sqrt{x-3}}}$
(3)若y=f(x)的定義域?yàn)閇1,3],求y=f(1-3x)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案