19.函數(shù)f(x)=3x+$\frac{2}{x}$,x∈[1,2]的值域為[2$\sqrt{6}$,7].

分析 利用基本不等式只能求和的最小值,再求出最大值得值域.

解答 解:f(x)=3x+$\frac{2}{x}$≥2$\sqrt{3x•\frac{2}{x}}$=2$\sqrt{6}$
當且僅當3x=$\frac{2}{x}$,即x=$\frac{\sqrt{6}}{3}$時取“=”.
∴f(x)的最小值為2$\sqrt{6}$
又∵f(1)=5,f(2)=7
∴f(x)的最大值為7.
故答案為:[2$\sqrt{6}$,7].

點評 利用基本不等式只能求出一個最值,若求值域需求出另一最值,考查分析問題解決問題的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知復數(shù)z=$\frac{1+2{i}^{3}}{2-i}$(i為虛數(shù)單位),則|z|=(  )
A.$\frac{3}{5}$B.1C.$\frac{\sqrt{5}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.一個圓錐形容器,上口半徑為5cm.高為6cm,容器內(nèi)裝滿了某種液體,其中進入了一個細菌,從中取出50cm3的液體,則其中含有這個細菌的概率是$\frac{1}{π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知雙曲線E的漸近線方程為3x±4y=0,且E的右焦點為(5,0),過雙曲線E中心的直線與雙曲線E交于A,B兩點,在雙曲線E上取一點C,直線AC,BC的斜率分別為k1、k2,則k1k2等于( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,點M(a,b).若∠MF1F2=30°,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項和為Sn,S11=22,a4=-12,如果當n=m時,Sn最小,那么m的值為(  )
A.10B.9C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.化簡下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)($\sqrt{a}$+$\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt}$)÷($\frac{a}{\sqrt{ab}+b}$+$\frac{\sqrt{ab}-a}$-$\frac{a+b}{\sqrt{ab}}$)-$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)為偶函數(shù),且在區(qū)間($\frac{3π}{4}$,π)上單調(diào)遞增,則ω的最小值為( 。
A.2B.$\frac{4}{3}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知F是雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦點,點P的坐標為(3,1),點A在雙曲線上,則|AP|+|AF|的最小值為( 。
A.$\sqrt{37}$+4B.$\sqrt{37}$-4C.$\sqrt{37}$-2$\sqrt{5}$D.$\sqrt{37}$+2$\sqrt{5}$

查看答案和解析>>

同步練習冊答案