A. | $\sqrt{37}$+4 | B. | $\sqrt{37}$-4 | C. | $\sqrt{37}$-2$\sqrt{5}$ | D. | $\sqrt{37}$+2$\sqrt{5}$ |
分析 設(shè)雙曲線的左焦點(diǎn)為F',求出雙曲線的a,b,c,運(yùn)用雙曲線的定義可得|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,考慮A在左支上運(yùn)動(dòng)到與P,F(xiàn)'共線時(shí),取得最小值,即可得到所求值.
解答 解:由題意可得A在雙曲線的左支上,
雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的a=$\sqrt{5}$,b=2,c=3,
設(shè)雙曲線的左焦點(diǎn)為F',
即有F(3,0),F(xiàn)'(-3,0),
由雙曲線的定義可得|AF'|-|AF|=2a=2$\sqrt{5}$,
即有|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,
當(dāng)A在左支上運(yùn)動(dòng)到P,A,F(xiàn)'共線時(shí),
|AP|+|AF'|取得最小值|PF'|=$\sqrt{(3+3)^{2}+{1}^{2}}$=$\sqrt{37}$,
則有|AP|+|AF|的最小值為$\sqrt{37}$-2$\sqrt{5}$.
故選:C.
點(diǎn)評(píng) 本題考查雙曲線上一點(diǎn)到一定點(diǎn)和焦點(diǎn)的距離和的最小值,注意運(yùn)用雙曲線的定義和三點(diǎn)共線時(shí)取得最小值,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-1,\frac{1}{2}})∪[{2,+∞})$ | B. | $[{-1,\frac{1}{2}}]∪({2,+∞})$ | C. | [2,+∞) | D. | $[{-1,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com