19.已知某幾何體的三視圖(單位:cm),如圖所示,則此幾何體的外接球的體積為( 。
A.$\frac{9}{2}$πcm3B.36πcm3C.$\frac{64}{3}$πcm3D.9πcm3

分析 由三視圖可知,該幾何體是四棱錐,底面是邊長為2的正方形,高為1,求出外接球的半徑,可得幾何體的外接球的體積.

解答 解:該幾何體是四棱錐,底面是邊長為2的正方形,高為1.
則其外接球的半徑為R=$\sqrt{4+4+1}$÷2=$\frac{3}{2}$
所以外接球的體積是S=$\frac{4}{3}$πR3=$\frac{4}{3}$π×$\frac{27}{8}$=$\frac{9}{2}$π(cm3).
故選:A.

點(diǎn)評 本題考查幾何體的外接球的體積,考查學(xué)生的計算能力,確定外接球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某商場根據(jù)市場調(diào)研,決定從3種服裝商品、2種家電商品和4種日用商品中選出3種商品進(jìn)行促銷活動.
(Ⅰ)求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)被選中的促銷商品在現(xiàn)價的基礎(chǔ)上提高60元進(jìn)行銷售,同時提供3次抽獎的機(jī)會,第一次和第二次中獎均可獲得獎金40元,第三次中獎可獲得獎金30元,假設(shè)顧客每次抽獎時中獎與否是等可能的,顧客所得獎金總數(shù)為X元,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合M={x∈R|y=$\sqrt{x+1}$},N={y∈R|y=x2-1,x∈R},則集合M和N的關(guān)系是(  )
A.M=NB.M∪N=RC.N?MD.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合M={x|x<1},N={x|lg(2x+1)>0},則M∩N=(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$\overrightarrow{a}$,$\overrightarrow$為兩個互相垂直的單位向量,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=m$\overrightarrow{a}$+n$\overrightarrow$.若△ABC是以A為直角頂點(diǎn)的等腰直角三角形,則m+n=( 。
A.1或-3B.-1或3C.2或-4D.-2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2做直線l交橢圓于P,Q兩點(diǎn).若圓O:x2+y2=b2過F1,F(xiàn)2,且△PF1F2的周長為2$\sqrt{2}$+2.
(Ⅰ)求橢圓C和圓O的方程;
(Ⅱ)若M為圓O上任意一點(diǎn),設(shè)直線l的方程為4x-3y-4=0,求△MPQ面積S△MPQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)全集U={1,2,3,4,5,6},用U的子集可表示由0,1組成的6位字符串,如{2,4}; 表示的是笫2個字符為1,第4個字符為1,其余均為0的6位字符串010100,并規(guī)定空集表示的字符串為000000.
①若M={2,3.6},則∁UM表示的6位字符串為100110;
②若A={1,3},集合A∪B表示的字符串為101001,則滿足條件的集合B的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={x|0≤$\sqrt{{x}^{2}}$≤1},B={x|-p≤x≤p},要使A=B,則p的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)M(a,b)在直線3x+4y=15上,則$\sqrt{{a}^{2}+^{2}-2a-2b+2}$的最小值為$\frac{8}{5}$.

查看答案和解析>>

同步練習(xí)冊答案