18.若關(guān)于x的方程lgx=5-2x的解x0∈(k,k+1),k∈Z,則k=2.

分析 方程的解即對(duì)應(yīng)函數(shù)f(x)=lgx+2x-5的零點(diǎn),由f(2)<0,f(3)>0知,方程f(x)=0 的零點(diǎn)在(2,3)上,又方程f(x)=0 的零點(diǎn)在∈(k,k+1)上,k∈Z,可得 k值.

解答 解:令f(x)=lgx+2x-5,則方程lgx+2x-5=0的解x=x0∈(k,k+1),k∈Z,即函數(shù)f(x)的零點(diǎn),
在(k,k+1)上,k∈Z,
∵f(2)=lg2+4-5<0,f(3)=lg3+6-5>0,
∴函數(shù)f(x)的零點(diǎn)在(2,3)上,
∴k=2,
故答案為 2.

點(diǎn)評(píng) 本題考查方程的解與函數(shù)零點(diǎn)的關(guān)系及用二分法求方程的近似解.解答關(guān)鍵是函數(shù)思想,和方程思想的應(yīng)用,屬于基礎(chǔ)題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.{an}是等比數(shù)列且an>0,且a2•a4+2a3•a5+a4•a6=25,則a3+a5═( 。
A.5B.±5C.10D.±10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)為Sn,且a1+a5=-14,S9=-27,則使得Sn取最小值時(shí)的n為( 。
A.1B.6C.7D.6或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知二次函數(shù)f(x)滿足f(1)=1,且f(x+1)-f(x)=4x-2.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)y=$\frac{1}{1-x}$的反函數(shù)是y=1-$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A、B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知下列選項(xiàng),其中錯(cuò)誤的是(  )
①過(guò)圓(x-1)2+(y-2)2=4外一點(diǎn)M(3,1),且與圓相切的直線方程為3x-4y-5=0;
②方程Ax2+By2=1(A>0,B>0)表示橢圓方程;
③平面內(nèi)到點(diǎn)F1(0,4),F(xiàn)2(0,-4)距離之差的絕對(duì)值等于8的點(diǎn)的軌跡是雙曲線;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(mn>0)表示焦點(diǎn)在x軸上的雙曲線.
A.①②③④B.①②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知正實(shí)數(shù)x,y滿足x+4y-xy=0,則x+y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}2-y≥0\\ x-3y+2≤0\\ 4x-5y+2≥0\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最大值為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案