考點:數(shù)列的求和,數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由S
n=
a
n-
×2
n+1+
,n∈N
*.當n≥2時,S
n-1=
an-1-×2n+,a
n=S
n-S
n-1,化為
an+2n=4
(an-1+2n-1),利用等比數(shù)列的通項公式即可得出.
(2)由(1)可得S
n=
(4
n-2
n)-
×2
n+1+
=
.可得T
n=
=
(-).利用“裂項求和”即可證明.
解答:
(1)解:∵S
n=
a
n-
×2
n+1+
,n∈N
*.
∴當n=1時,a
1=S
1=
a1-
+,解得a
1=2.
當n≥2時,S
n-1=
an-1-×2n+,a
n=S
n-S
n-1=
an-×2n+1+-
(an-1-×2n+),
化為
an=4an-1+2n,
變形為
an+2n=4
(an-1+2n-1),
∴數(shù)列
{an+2n}是等比數(shù)列,首項為a
1+2=4,公比為4.
∴
an=4n-2n.
因此:a
1=2,
an=4n-2n.
(2)證明:由(1)可得S
n=
(4
n-2
n)-
×2
n+1+
=
.
T
n=
=
=
=
(-).
∴T
1+T
2+T
3+…+T
n<
[(1-)+(-)+…+
(-)]=
(1-)<.
∴T
1+T
2+T
3+…+T
n<.
點評:本題考查了等比數(shù)列的定義及通項公式、“裂項求和”、遞推式的應用,考查了變形能力,考查了推理能力與計算能力,屬于難題.