【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點(diǎn),過的直線交橢圓于兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?
【答案】(1)(2)存在,點(diǎn)在定直線上
【解析】
(1)對三角形應(yīng)用余弦定理即可求得,結(jié)合橢圓定義求得,問題得解。
(2)設(shè),,,利用及列方程,整理得:,由整理得:,從而表示出,聯(lián)立直線與橢圓方程,由韋達(dá)定理得:,代入上式得:,解得:,問題得解.
(1)設(shè),則內(nèi),
由余弦定理得,
化簡得,解得,
故,
∴,得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)已知,,設(shè),,,
由,①
,②
兩式相除得.
又,
故,
故,③
設(shè)的方程為,代入整理,
得,恒成立.
把代入③,
得,
得到,故點(diǎn)在定直線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),拋物線在處的切線交于.
(1)求證:;
(2)設(shè),當(dāng)時,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),面積的最大值是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=an+(c>0,n∈N*),
(Ⅰ)證明:an+1>an≥1;
(Ⅱ)若對任意n∈N*,都有,證明:(ⅰ)對于任意m∈N*,當(dāng)n≥m時,
(ⅱ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某高校學(xué)生喜歡使用手機(jī)支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計后作出如圖所示的等高條形圖,則下列說法正確的是( )
A.喜歡使用手機(jī)支付與性別無關(guān)
B.樣本中男生喜歡使用手機(jī)支付的約
C.樣本中女生喜歡使用手機(jī)支付的人數(shù)比男生多
D.女生比男生喜歡使用手機(jī)支付的可能性大些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若為的極值點(diǎn),求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若,則”的否命題為“若,則”
B.命題“,”的否定是“,則”
C.命題“若,則”的逆否命題為真命題
D.“”是“”的必要不充分條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com