【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求 的值.

【答案】解:(I)證明:∵AA1C1C是正方形,∴AA1⊥AC.

又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,

∴AA1⊥平面ABC.

(II)解:由AC=4,BC=5,AB=3.

∴AC2+AB2=BC2,∴AB⊥AC.

建立如圖所示的空間直角坐標(biāo)系,則A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),

,

設(shè)平面A1BC1的法向量為 ,平面B1BC1的法向量為 =(x2,y2,z2).

,令y1=4,解得x1=0,z1=3,∴

,令x2=3,解得y2=4,z2=0,∴

= = =

∴二面角A1﹣BC1﹣B1的余弦值為

(III)設(shè)點(diǎn)D的豎坐標(biāo)為t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,

= , =(0,3,﹣4),

,∴ ,

,解得t=


【解析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性質(zhì)即可證明(II)利用勾股定理的逆定理可得AB⊥AC.通過建立空間直角坐標(biāo)系,利用兩個平面的法向量的夾角即可得到二面角;(III)設(shè)點(diǎn)D的豎坐標(biāo)為t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,利用向量垂直于數(shù)量積得關(guān)系即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校決定在主干道旁邊挖一個半橢圓形狀的小湖,如圖所示,AB=4,O為AB的中點(diǎn),橢圓的焦點(diǎn)P在對稱軸OD上,M、N在橢圓上,MN平行ABODG,且GP的右側(cè),△MNP為燈光區(qū),用于美化環(huán)境.

(1)若學(xué)校的另一條道路EF滿足OE=3,tan∠OEF=2,為確保道路安全,要求橢圓上任意一點(diǎn)到道路EF的距離都不小于,求半橢圓形的小湖的最大面積:(橢圓()的面積為)

(2)若橢圓的離心率為,要求燈光區(qū)的周長不小于,求PG的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P是雙曲線在第一象限內(nèi)的點(diǎn),直線PO,PF2分別交雙曲線C的左、右支于另一點(diǎn)M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的三條對邊,且c2=a2+b2﹣ab.
(Ⅰ)求角C的大;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為函數(shù)f(x)=lnx的圖象上任意一點(diǎn),點(diǎn)Q為圓[x﹣(e+ )]2+y2=1任意一點(diǎn),則線段PQ的長度的最小值為(
A.
B.
C.
D.e+ ﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.
(Ⅰ)當(dāng)a=2時,求不等式f(x)≥3x+2的解集;
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

同步練習(xí)冊答案