已知M={a,a+d,a+2d},N={a,aq,aq2},a≠0,M=N,求q的值.
考點:集合的相等
專題:集合
分析:根據(jù)集合相等的概念,便可得到
a+d=aq
a+2d=aq2
,
a+d=aq2
a+2d=aq
,解這兩個方程組即可求出q,并驗證是否滿足集合元素的互異性.
解答: 解:∵M(jìn)=N,∴
a+d=aq
a+2d=aq2
,或
a+d=aq2
a+2d=aq

∴解得q=1,或-
1
2

q=1時,N={a,a,a},不滿足集合元素的互異性,∴q≠1;
q=-
1
2
點評:考查集合相等的概念,集合元素的互異性,不要忘了驗證q是否滿足集合元素的互異性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sinA
1+cosA
=
1
2
,則sinA+cosA的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2x=2-a有負(fù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(-5,3)和點N(-2,0)的直線的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)x,試確定(
x2+x+1
)-(
x2-x+1
)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從(0,1)中隨機(jī)地取兩個數(shù),試求下列概率:
(1)兩數(shù)之和小于1.2;
(2)兩數(shù)之和小于1且其積小于
3
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x-y+3=0與橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點和一個頂點的連線垂直,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AA1=AC,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1ACC1
(Ⅱ)若D,E分別為A1C1和BB1的中點,求證:DE∥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(2-
a
2
)x+2,x≤2
ax-1,x>2
在R上是增函數(shù),則實數(shù)a的取值范圍是( 。
A、2<a<4
B、2≤a<4
C、3<a<4
D、3≤a<4

查看答案和解析>>

同步練習(xí)冊答案