【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且圓心C在直線x+y-1=0上.
(1)求圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程.
【答案】(1)(2)y=-x+4或y=-x-3
【解析】
(1)由圓的性質(zhì)知圓心在線段的垂直平分線上,因此可求得線段的垂直平分線的方程,與方程聯(lián)立,可求得圓心坐標(biāo),再求得半徑后可得圓標(biāo)準(zhǔn)方程;
(2)設(shè)的方程為.代入圓方程,設(shè)A(x1,y1),B(x2,y2),則x1+x2=m+1,x1x2=-6.而以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,則有,即,由此可求得,得直線方程.
(1)∵P(4,-2),Q(-1,3),
∴線段PQ的中點M,斜率kPQ=-1,
則PQ的垂直平分線方程為,
即.
解方程組
得
∴圓心C(1,0),半徑.
故圓C的方程為.
(2)由l∥PQ,設(shè)l的方程為.
代入圓C的方程,得.
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=m+1,x1x2=-6.
故y1y2=(m-x1)(m-x2)=m2+x1x2-m(x1+x2),
依題意知OA⊥OB,則.
∴(x1,y1)·(x2,y2)=x1x2+y1y2=0,
于是m2+2x1x2-m(x1+x2)=0,即m2-m-12=0.
∴m=4或m=-3,經(jīng)檢驗,滿足Δ>0.
故直線l的方程為y=-x+4或y=-x-3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈R,|x|<1時,有如下表達(dá)式:1+x+x2+…+xn+…=
兩邊同時積分得: dx+ xdx+ x2dx+…+ xndx+…= dx
從而得到如下等式:1× + ×( )2+ ×( )3+…+ ×( )n+1+…=ln2
請根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計算:
× + ×( )2+ ×( )3+…+ ×( )n+1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,
9表示擊中目標(biāo),以4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | A | B | C | D |
規(guī)定:A,B,C三級為合格等級,D為不合格等級為了解該校高三年級學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計.
按照,,,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示
求n和頻率分布直方圖中的x,y的值,并估計該校高一年級學(xué)生成績是合格等級的概率;
根據(jù)頻率分布直方圖,求成績的中位數(shù)精確到;
在選取的樣本中,從A,D兩個等級的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E: 的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1 , F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障高考的公平性,高考時每個考點都要安裝手機(jī)屏蔽儀,要求在考點周圍1 km內(nèi)不能收到手機(jī)信號,檢查員抽查某市一考點,在考點正西約 km/h的的B處有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以每小時12千米的速度沿公路行駛,最多需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點才算合格?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com