分析 利用立方和和立方差公式分解,利用三角函數(shù)的基本關(guān)系式、倍角公式化簡.
解答 解:①sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)═(sinα+cosα)(1-$\frac{1}{2}$sin2α).
②sin3α-cos3α=(sinα-cosα)(sin2α+sinαcosα+cos2α)═(sinα-cosα)(1+$\frac{1}{2}$sin2α).
故答案為:(sinα+cosα)(1-$\frac{1}{2}$sin2α)和(sinα-cosα)(1+$\frac{1}{2}$sin2α).
點(diǎn)評 本題考查了三角函數(shù)式的化簡;用到了立方和公式、三角函數(shù)的基本關(guān)系式、倍角公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{(2n-1){3}^{n}+5}{2}$ | B. | $\frac{(2n-3){3}^{n}+5}{2}$ | C. | $\frac{(2n-5){3}^{n}+5}{2}$ | D. | $\frac{(2n+5){3}^{n}+5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛程度 | 非常喜歡 | 一般 | 不喜歡 |
人數(shù) | 500 | 200 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$=$\overrightarrow$ | B. | |$\overrightarrow{a}$|=|$\overrightarrow$| | C. | $\overrightarrow{a}$⊥$\overrightarrow$ | D. | $\overrightarrow{a}$∥$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com