定義:e=cosθ+isinθ,其中i是虛數(shù)單位,θ∈R,且實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)e都適應(yīng).若x=C
 
0
3
cos3
π
12
-C
 
2
3
cos
π
12
sin2
π
12
,y=C
 
1
3
cos2
π
12
sin
π
12
-C
 
3
3
sin3
π
12
,則x+yi=
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用,復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)單位i冪的運(yùn)算,化簡(jiǎn)x+yi構(gòu)造二項(xiàng)式定理的形式,然后求出值即可.
解答: 解:x+yi=C
 
0
3
cos3
π
12
-C
 
2
3
cos
π
12
sin2
π
12
+iC
 
1
3
cos2
π
12
sin
π
12
-iC
 
3
3
sin3
π
12

=(cos
π
12
+isin
π
12
3=cos
π
4
+isin
π
4
=
2
2
+
2
2
i

故答案為:
2
2
+
2
2
i
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,復(fù)數(shù)棣美弗定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)古典概型的基本事件空間Ω中,若事件A是必然事件,事件B是不可能事件,那么事件A與事件B之間的關(guān)系是( 。
A、是互斥事件,非對(duì)立事件
B、是對(duì)立事件,非互斥事件
C、是互斥事件,也是對(duì)立事件
D、非對(duì)立事件,亦非互斥事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2+4y=0的半徑和圓心坐標(biāo)分別為  ( 。
A、圓心為(0,2),半徑為4
B、圓心為(0,-2),半徑為4
C、圓心為(0,2),半徑為2
D、圓心為(0,-2),半徑為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平面四邊形,∠ABC=60°,BC=2AB,PA⊥底面ABCD.
(1)證明:PB⊥AC;
(2)設(shè)PA=AB=1,求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)為4,M,N分別在A(yíng)A1和CC1上,A1M=CN=1,P是BC中點(diǎn).
(1)求四面體A1-PMN的體積;
(2)證明A1B∥平面PMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值:log535+2log 
1
2
2
-log5
1
50
-log514.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
m
=(a,c),
n
=(cosC,-sinA),
m
n
,其中a,b,c分別是△A,B,C中角A,B,C所對(duì)的邊.
(Ⅰ)求角C的大小;
(Ⅱ)求
3
sinA-cos(B+
π
4
)的最大值,并求取得最大值時(shí)角A,B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)拋物線(xiàn)y2=2px(p>0)外的一點(diǎn)A(-2,-4)且傾斜角為45°的直線(xiàn)l與拋物線(xiàn)分別交于M1,M2,如果|AM1|,|M1M2|,|AM2|成等比數(shù)列,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2是方程2x2+4x-3=0的兩根
(1)求
1
x1
+
1
x2
的值;      
(2)求x12+x22的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案