11.函數(shù)y=$\sqrt{3}$sinx+cosx的最大值為2.

分析 利用兩角和的正弦化積,則三角函數(shù)的最大值可求.

解答 解:∵y=$\sqrt{3}$sinx+cosx=$2(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx)$=$2sin(x+\frac{π}{6})$,
∴函數(shù)y=$\sqrt{3}$sinx+cosx的最大值為2.
故答案為:2.

點(diǎn)評 本題考查三角函數(shù)的化簡與求值,考查了兩角和的正弦,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系中,圓C1:x2+y2=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲線C2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cosθ+sinθ=$\frac{10}{ρ}$.
(Ⅰ)求曲線C2的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(Ⅱ)在C2上求一點(diǎn)M,是點(diǎn)M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(3cosβ,3sinβ),其夾角為60°,則直線xcosα-ysinα+$\frac{1}{2}$=0與圓(x-cosβ)2+(y+sinβ)2=$\frac{1}{2}$的位置關(guān)系是相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于任意實(shí)數(shù)λ,曲線(1+λ)x2+(1+λ)y2+(6-4λ)x-16-6λ=0恒過定點(diǎn)(1,±3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知?jiǎng)狱c(diǎn)P在拋物線y2=2x上,定點(diǎn)A(m,0)(m>0),求|PA|的最小值以及取最小值時(shí)P點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圖中的三視圖表示的幾何體為( 。
A.圓柱B.圓錐C.圓臺D.三棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以下說法中:
①圓臺上底面的面積與下底面的面積之比一定小于1;
②矩形繞任意一條直線旋轉(zhuǎn)都可以圍成圓柱;
③過圓臺側(cè)面上每一點(diǎn)的母線都相等.
正確的序號為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.與圓x2+y2-3x+5y-1=0同心,且過點(diǎn)M(1,2)的圓的一般方程是x2+y2-2x-4y-$\frac{31}{2}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,則z=$\frac{y}{x}$-$\frac{x}{y}$的取值范圍是[-$\frac{8}{3}$,$\frac{3}{2}$],z=$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是[2,$\frac{10}{3}$].

查看答案和解析>>

同步練習(xí)冊答案