分析 命題p:?x∈[1,2],x2-a2≥0,可得a2≤(x2)min.命題q:?x∈R,使得x2+(a-1)x+1<0.可得△>0.由p或q為真,p且q為假,p與q必然一真一假.
解答 解:命題p:?x∈[1,2],x2-a2≥0,∴a2≤(x2)min=1,解得-1≤a≤1.
命題q:?x∈R,使得x2+(a-1)x+1<0.∴△=(a-1)2-4>0,解得a>3或a<-1.
∵p或q為真,p且q為假,p與q必然一真一假,
∴$\left\{\begin{array}{l}{-1≤a≤1}\\{-1≤a≤3}\end{array}\right.$,或$\left\{\begin{array}{l}{a<-1或a>1}\\{a>3或a<-1}\end{array}\right.$,
解得-1≤a≤1,或a<-1,或a>3.
∴實(shí)數(shù)a的取值范圍是(-∞,1]∪(3,+∞).
點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4-π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+2i | B. | -1-2i | C. | 1-2i | D. | 1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{18}$ | B. | -$\frac{39}{2}$ | C. | -$\frac{3}{10}$ | D. | $\frac{39}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com