18.設不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域為D,在區(qū)域D內隨機取一個點,則此點到點(1,1)的距離大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 根據(jù)題意,在區(qū)域D內隨機取一個點P,則P點到坐標原點的距離大于1時,點P位于圖中正方形OABC內,且在扇形OAC的外部,如圖中的陰影部分.因此算出圖中陰影部分面積,再除以正方形OABC面積,即得本題的概率.

解答 解:到坐標原點的距離大于1的點,位于以原點O為圓心、半徑為1的圓
區(qū)域D:$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示正方形OABC,(如圖)
其中O為坐標原點,A(1,0),B(1,1),C(0,1).
因此在區(qū)域D內隨機取一個點P,
則P點到坐標原點的距離大于1時,點P位于圖中正方形OABC內,
且在扇形OAC的外部,如圖中的陰影部分
∵S正方形OABC=12=1,S陰影=S正方形OABC-S扇形OAC=1-$\frac{1}{4}$π•12=1-$\frac{1}{4}$π
∴所求概率為P=1-$\frac{1}{4}$π
故選:A.

點評 本題給出不等式組表示的平面區(qū)域,求在區(qū)域內投點使該到原點距離大于1的概率,著重考查了二元一次不等式組表示的平面區(qū)域和幾何概型等知識點,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=2sin(2x+$\frac{π}{3}$),g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若對任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是(  )
A.$(1,\frac{4}{3})$B.$(\frac{2}{3},1]$C.$[\frac{2}{3},1]$D.$[1,\frac{4}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知一扇形的周長為40,當扇形的面積最大時,扇形的圓心角等于( 。
A.2B.3C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在矩形ABCD中,AB=$\sqrt{3}$,BC=3,E在AC上,若BE⊥AC,則ED的長=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為梯形,AB∥CD.若棱AB,AD,AP兩兩垂直,長度分別為1,2,2,且向量$\overrightarrow{PC}$與$\overrightarrow{BD}$夾角的余弦值為$\frac{\sqrt{15}}{15}$.
(1)求CD的長度;
(2)求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2ax+2a,g(x)=(2-a)x,其中a∈R.
(1)若f(x)為偶函數(shù),求a的值;
(2)求關于x的不等式f(x)>g(x)的解集;
(3)若f(x)-g(x)>-4對任意的x∈[3,6]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{6}$)的振幅3,周期4π,頻率$\frac{1}{4π}$,相位$\frac{1}{2}$x-$\frac{π}{6}$,初相-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知命題p:?x∈[1,2],x2-a2≥0.命題q:?x∈R,使得x2+(a-1)x+1<0.若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知tanα=2.
(1)求$\frac{{sin(π-α)+cos(α-\frac{π}{2})-cos(3π+α)}}{{cos(\frac{π}{2}+α)-sin(2π+α)+2sin(α-\frac{π}{2})}}$的值;
(2)求cos2α+sinαcosα的值.

查看答案和解析>>

同步練習冊答案