【題目】商家生產(chǎn)一種產(chǎn)品需要先進行市場調(diào)研,計劃對北京、上海、廣州三地進行市場調(diào)研,待調(diào)研結(jié)束后決定生產(chǎn)的產(chǎn)品數(shù)量,下列四種方案中最可取的是(  )

A.

B.

C.

D.

【答案】D

【解析】

試題分析:四種方案中最可取的是,分別派出調(diào)研人員齊頭并進赴三地搞調(diào)研,以便提早結(jié)束調(diào)研,盡早投產(chǎn),由此可得結(jié)論.

解:方案A.立頂派出調(diào)研人員先后赴深圳、天津、成都調(diào)研,待調(diào)研人員回來后決定生產(chǎn)數(shù)量.

方案B.立頂派出調(diào)研人員先齊頭并進赴深圳、天津調(diào)研,結(jié)束再赴成都調(diào)研,待調(diào)研人員回來后決定生產(chǎn)數(shù)量.

方案C.立頂派出調(diào)研人員先赴成都調(diào)研,結(jié)束后再齊頭并進赴深圳、天津調(diào)研,待調(diào)研人員回來后決定生產(chǎn)數(shù)量.

方案D.分別派出調(diào)研人員齊頭并進赴三地搞調(diào)研,以便提早結(jié)束調(diào)研,盡早投產(chǎn).

通過四種方案的比較,方案D更為可取.

故選D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)為R上的可導函數(shù),當時, , 則函數(shù)g(x)=f(x)+的零點分數(shù)為( )
A.1
B.2
C.0
D.0或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)的圖象關(guān)于點 成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:

①直線是函數(shù)圖象的一條對稱軸;②函數(shù)為偶函數(shù);

③函數(shù)的圖象的所有交點的橫坐標之和為.

其中正確的判斷是__________________.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上且以4為周期的奇函數(shù),當x∈(0,2)時,f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上的零點個數(shù)為5,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)

2

3

4

5

加工的時間(小時)

2.5

3

4

4.5

Ⅰ)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;

Ⅱ)試對的關(guān)系進行相關(guān)性檢驗,具有線性相關(guān)關(guān)系,求出的回歸直線方程;

Ⅲ)試預測加工個零件需要多少時間?

參考數(shù)據(jù):,.

附:);, ;

相關(guān)性檢驗的臨界值表

n-2

小概率

n-2

小概率

n-2

小概率

0.05

0.01

0.05

0.01

0.05

0.01

1

0.997

1

4

0.811

0.917

7

0.666

0.798

2

0.950

0.990

5

0.754

0.874

8

0.632

0.765

3

0.878

0.959

6

0.707

0.834

9

0.602

0.735

注:表中的n為數(shù)據(jù)的組數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列各等式(i為虛數(shù)單位):

(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;

(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;

(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;

(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.

f(x)=cos x+isin x

猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關(guān)還是負相關(guān);若該地1月份某天的最低氣溫為6,請用所求回歸方程預測該店當日的營業(yè)額.

: 回歸方程, ,

查看答案和解析>>

同步練習冊答案