【題目】如圖,在四棱錐P-ABCD中,, ,,, PA=AB=BC=2. E是PC的中點.
(1)證明: ;
(2)求三棱錐P-ABC的體積;
(3) 證明:平面
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且對任意,都有.
(1)計算,,,由此推測的通項公式,并用數(shù)學(xué)歸納法證明;
(2)若(),求無窮數(shù)列的前項之和與的最大項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線:(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線:.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若曲線與交于,兩點,,的中點為,點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標(biāo)進行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護次數(shù)與指標(biāo)有關(guān),具體見下表.
質(zhì)量指標(biāo) | |||
頻數(shù) | |||
一年內(nèi)所需維護次數(shù) |
(1)以每個區(qū)間的中點值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));
(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;
(3)已知該廠產(chǎn)品的維護費用為元/次,工廠現(xiàn)推出一項服務(wù):若消費者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費維護一次.將每件產(chǎn)品的購買支出和一年的維護支出之和稱為消費費用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計算每件產(chǎn)品的平均消費費用,并以此為決策依據(jù),判斷消費者在購買每件產(chǎn)品時是否值得購買這項維護服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,點M在線段PC上,且PM=2MC,N為AD的中點.
(1)求證:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體,,,均垂直于平面ABC,,.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成的角的余弦值;
(Ⅲ)求平面與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數(shù)量(累計值,如124表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 34 | 95 | 124 | 181 | 216 |
(1)若私家車的數(shù)量與年份編號滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該小區(qū)的私家車數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個停車位,為解決小區(qū)車輛亂停亂放的問題,加強小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進入小區(qū),由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:
①截至2018年已登記在冊的私家車業(yè)主擁有競拍資格;
②每車至多申請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報價;
③根據(jù)物價部門的規(guī)定,競價不得超過1200元;
④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;
⑤若最后出現(xiàn)并列的報價,則以提出申請的時間在前的業(yè)主成交,為預(yù)測本:次競拍的成交最低價,物業(yè)公司隨機抽取了有競拍資格的40位業(yè)主進行競拍意向的調(diào)查,統(tǒng)計了他們的擬報競價,得到如下頻率分布直方圖:
(ⅰ)求所抽取的業(yè)主中有意向競拍報價不低于1000元的人數(shù);
(ⅱ)如果所有符合條件的車主均參與競拍,利用樣木估計總體的思想,請你據(jù)此預(yù)測至少需要報價多少元才能競拍車位成功?(精確到整數(shù))
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過坐標(biāo)原點的直線交橢圓于兩點,在第一象限,軸,垂足為,連接延長交橢圓于點.
①求證:;
②求面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在招聘員工時,要進行筆試,面試和實習(xí)三個過程.筆試設(shè)置了3個題,每一個題答對得5分,否則得0分.面試則要求應(yīng)聘者回答3個問題,每一個問題答對得5分,否則得0分.并且規(guī)定在筆試中至少得到10分,才有資格參加面試,而筆試和面試得分之和至少為25分,才有實習(xí)的機會.現(xiàn)有甲去該公司應(yīng)聘,假設(shè)甲答對筆試中的每一個題的概率為,答對面試中的每一個問題的概率為.
(1)求甲獲得實習(xí)機會的概率;
(2)設(shè)甲在去應(yīng)聘過程中的所得分?jǐn)?shù)為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com