【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車(chē)的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒(méi)有配套建造地下停車(chē)場(chǎng),小區(qū)內(nèi)無(wú)序停放的車(chē)輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊(cè)的私家車(chē)數(shù)量(累計(jì)值,如124表示2016年小區(qū)登記在冊(cè)的所有車(chē)輛數(shù),其余意義相同),得到如下數(shù)據(jù):

編號(hào)

1

2

3

4

5

年份

2014

2015

2016

2017

2018

數(shù)量(單位:輛)

34

95

124

181

216

(1)若私家車(chē)的數(shù)量與年份編號(hào)滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)2020年該小區(qū)的私家車(chē)數(shù)量;

(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個(gè)停車(chē)位,為解決小區(qū)車(chē)輛亂停亂放的問(wèn)題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無(wú)車(chē)位的車(chē)輛進(jìn)入小區(qū),由于車(chē)位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式將車(chē)位對(duì)業(yè)主出租,租期一年,競(jìng)拍方案如下:

①截至2018年已登記在冊(cè)的私家車(chē)業(yè)主擁有競(jìng)拍資格;

②每車(chē)至多申請(qǐng)一個(gè)車(chē)位,由車(chē)主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出自己的報(bào)價(jià);

③根據(jù)物價(jià)部門(mén)的規(guī)定,競(jìng)價(jià)不得超過(guò)1200元;

④申請(qǐng)階段截止后,將所有申請(qǐng)的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;

⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請(qǐng)的時(shí)間在前的業(yè)主成交,為預(yù)測(cè)本:次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的40位業(yè)主進(jìn)行競(jìng)拍意向的調(diào)查,統(tǒng)計(jì)了他們的擬報(bào)競(jìng)價(jià),得到如下頻率分布直方圖:

(。┣笏槿〉臉I(yè)主中有意向競(jìng)拍報(bào)價(jià)不低于1000元的人數(shù);

(ⅱ)如果所有符合條件的車(chē)主均參與競(jìng)拍,利用樣木估計(jì)總體的思想,請(qǐng)你據(jù)此預(yù)測(cè)至少需要報(bào)價(jià)多少元才能競(jìng)拍車(chē)位成功?(精確到整數(shù))

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,

【答案】(1)310(2)(i)12(ii)974

【解析】

1)利用回歸直線方程方程計(jì)算公式,計(jì)算出回歸直線方程,令求得預(yù)測(cè)值.2)(i)根據(jù)頻率分布直方圖計(jì)算出不低于的頻率,由此計(jì)算出人數(shù). (ii)先求得能夠競(jìng)拍成功的比例為,用求得競(jìng)拍成功的最低報(bào)價(jià).

解:(1)由表中數(shù)據(jù),計(jì)算得,

,

,

故所求線性回歸方程為,

,得,

所以預(yù)測(cè)2020年該小區(qū)的私家車(chē)數(shù)量為310輛.

(2)(i)由頻率分布直方圖可知,有意向競(jìng)拍報(bào)價(jià)不低于1000元的頻率為,

共抽取40位業(yè)主,則

所以有意向競(jìng)拍報(bào)價(jià)不低于1000元的人數(shù)為12人.

(ii)由題意,,

所以競(jìng)價(jià)自高到低排列位于前比例的業(yè)主可以競(jìng)拍成功,

結(jié)合頻率分布直方圖,預(yù)測(cè)競(jìng)拍成功的最低報(bào)價(jià)為

元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程;

2)已知點(diǎn),直線的極坐標(biāo)方程為,它與曲線的交點(diǎn)為,與曲線的交點(diǎn)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,該橢圓與軸正半軸交于點(diǎn),且是邊長(zhǎng)為的等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)任作一直線交橢圓于,兩點(diǎn),平面上有一動(dòng)點(diǎn),設(shè)直線,,的斜率分別為,,且滿足,求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,, ,,, PA=AB=BC=2. EPC的中點(diǎn).

1)證明: ;

2)求三棱錐P-ABC的體積;

3 證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知M為圓Cx2y24x14y450上任意一點(diǎn),且點(diǎn)Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mm,n),求的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線交于PQ兩點(diǎn),且的面積為16O為坐標(biāo)原點(diǎn)).

1)求C的方程.

2)直線l經(jīng)過(guò)C的焦點(diǎn)Fl不與x軸垂直;lC交于A,B兩點(diǎn),若線段AB的垂直平分線與x軸交于點(diǎn)D,試問(wèn)在x軸上是否存在點(diǎn)E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值點(diǎn);

(Ⅱ)若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;

(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為, ,過(guò)點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案