【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點,直線和曲線交于兩點,求的值.

【答案】(1);(2)

【解析】試題分析:(1)消去參數(shù),得,由,得,化為普通方程即可得斜率求傾斜角(2)由(1)知,點在直上,可設(shè)直線的參數(shù)方程為 (為參數(shù)),

(為參數(shù)),而 聯(lián)立方程求解

試題解析:

(1)由消去參數(shù),得,

即曲線的普通方程為

,得,(*)

代入(*),化簡得,

所以直線的傾斜角為

(2)由(1)知,點在直上,可設(shè)直線的參數(shù)方程為 (為參數(shù)),

(為參數(shù)),

代入并化簡,得,

設(shè)、兩點對應(yīng)的參數(shù)分別為、,

, , ,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是棱長為3的正方體,點上,點上,且,(1)求證: 四點共面; 2)若點上, ,點上, ,垂足為,求證: 3)用表示截面和面所成銳二面角大小,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 矩形所在的平面, 分別是的中點.

(1)求證: 平面;

(2)求證: .

(3)當(dāng)滿足什么條件時,能使平面成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠最近十年生產(chǎn)總量逐年上升,如表是部分統(tǒng)計數(shù)據(jù):

年份

2008

2010

2012

2014

2016

生產(chǎn)總量(萬噸)

(Ⅰ)利用所給數(shù)據(jù)求年生產(chǎn)總量與年份之間的回歸直線方程;

(Ⅱ)利用(Ⅰ)中所求出的直線方程預(yù)測該廠2018年生產(chǎn)總量.

(回歸直線的方程: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

(1)畫出莖葉圖

(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰參加比賽比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2,1), =(1,7), =(5,1),設(shè)X是直線OP上的一點(O為坐標(biāo)原點),那么 的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2( ﹣x)是偶函數(shù);
③函數(shù)y=4sin(2x﹣ )的一個對稱中心是( ,0);
④函數(shù)y=sin(x+ )在閉區(qū)間[﹣ , ]上是增函數(shù);
寫出所有正確的命題的題號:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)
(1)用a表示f(x)的最大值M(a);
(2)當(dāng)M(a)=2時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2 , b13=a3
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記cn=(﹣1)nbn+an , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案