分析 由等比數(shù)列的求和公式和分類討論可得結(jié)論.
解答 解:當(dāng)公比q=1時,顯然可得Sn,S2n-Sn,S3n-S2n,…構(gòu)成等比數(shù)列;
當(dāng)q≠1時,Sn=(1-qn)
S2n-Sn=$\frac{{a}_{1}}{1-q}$(1-q2n-1+qn)=$\frac{{a}_{1}}{1-q}$(1-qn)qn,
同理可得S3n-S2n=$\frac{{a}_{1}}{1-q}$(1-q3n-1+q2n)=$\frac{{a}_{1}}{1-q}$(1-qn)q2n,
∴Sn,S2n-Sn,S3n-S2n,…,構(gòu)成公比為qn的等比數(shù)列
故答案為:qn.
點評 本題考查等比數(shù)列的性質(zhì),涉及等比數(shù)列的求和公式,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | ±$\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | B. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ | D. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+3$\sqrt{2}$ | B. | 2+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com