3.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$

分析 用$\overrightarrow{a},\overrightarrow$表示出$\overrightarrow{PB},\overrightarrow{BQ}$,則$\overrightarrow{PQ}=\overrightarrow{PB}+\overrightarrow{BQ}$.

解答 解:∵$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,∴$\overrightarrow{PB}=\frac{2}{3}\overrightarrow{AB}$=$\frac{2}{3}\overrightarrow{a}$,
∵$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$=$\overrightarrow-\overrightarrow{a}$,
∴$\overrightarrow{BQ}=\frac{1}{3}\overrightarrow{BC}$=$\frac{1}{3}\overrightarrow-\frac{1}{3}\overrightarrow{a}$.
∴$\overrightarrow{PQ}=\overrightarrow{PB}+\overrightarrow{BQ}$=$\frac{1}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$.
故選:A.

點評 本題考查了平面向量線性運算的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b均為正數(shù).
(1)若a+b=1,求$\frac{1}{a}$+$\frac{4}$的最小值;
(2)證明:(1+a+b2)(1+a2+b)≥9ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x).若區(qū)間(a,b)上f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凹函數(shù)”;已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(2,3)上為“凹函數(shù)”,則實數(shù)m的取值范圍是( 。
A.(-∞,1]B.[1,$\frac{23}{9}$]C.(-∞,-3]D.(-∞,$\frac{23}{9}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知在△ABC中,AB=3,AC=7,點P在AC上,且PB=PC,則$\overrightarrow{AP}$•$\overrightarrow{BC}$=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的導(dǎo)數(shù).
(1)y=x2sinx;
(2)y=3xex-2x+e;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=cos32x+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}的公差不為零,a2=4,且a1,a3,a17成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{n-λ}{{a}_{n}}$,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等比數(shù)列的前n項和也構(gòu)成一個等比數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等比數(shù)列,公比為qn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.比較下列各組數(shù)的大小
(1)0.80.5與0.90.4
(2)40.9,80.48,($\frac{1}{2}$)-1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)是定義域為R的函數(shù),且f(x)=-f(x+$\frac{3}{2}$),f(-2)=f(-1)=-1,f(0)=2,則f(1)+f(2)+…+f(2016)=( 。
A.-2B.-1C.0D.2

查看答案和解析>>

同步練習(xí)冊答案