【題目】定義在R上的奇函數(shù)f(x),當x>0時,f(x)=x﹣2
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)<2的解集.

【答案】
(1)解:由題意知:f(﹣0)=﹣f(0)=f(0),f(0)=0;

當x<0時,則﹣x>0,

因為當x>0時,f(x)=x﹣2,

所以f(﹣x)=﹣x﹣2,

又因為f(x)是定義在R上的奇函數(shù),

所以f(﹣x)=﹣f(x),

所以f(x)=x+2,

所以f(x)的表達式為:f(x)=


(2)解:x<0時,x+2<2,∴x<0;

x=0,符合題意;

x>0時,x﹣2<2,∴x<4,∴0<x<4.

∴不等式的解集為(﹣∞,4)


【解析】(1)先根據(jù)f(x)是定義在R上的奇函數(shù),得到f(0)=0,再設(shè)x<0時,則﹣x>0,結(jié)合題意得到f(﹣x)=﹣x﹣2,然后利用函數(shù)的奇偶性進行化簡,進而得到函數(shù)的解析式.(2)利用(1)的結(jié)論,即可求不等式f(x)<2的解集.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞減的函數(shù)是(
A.
B.
C.y=﹣tanx
D.y=﹣x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示,為了得到g(x)=2sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調(diào)區(qū)間;

(2)若實數(shù)滿足,且對于任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)當時,求曲線在點處的切線方程;

(2)當時,求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)當a=2,求函數(shù)f(x)的最大值和最小值;
(2)若函數(shù)f(x)在定義域內(nèi)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)當時,求曲線在點處的切線方程;

(2)當時,求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線與曲線恰好相切于點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)求證:. .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求實數(shù)a的值;
(2)試判斷函數(shù)的單調(diào)性并加以證明;
(3)對任意的x∈R,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案