A. | $2\sqrt{5}$ | B. | 3$\sqrt{6}$ | C. | 2$\sqrt{6}$ | D. | 3$\sqrt{5}$ |
分析 設(shè)AB=AC=2x,三角形的頂角θ,則由余弦定理求得cosθ的表達(dá)式,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系求得sinθ,最后根據(jù)三角形面積公式表示出三角形面積的表達(dá)式,根據(jù)一元二次函數(shù)的性質(zhì)求得面積的最大值時的x即可.
解答 解:設(shè)AB=AC=2x,AD=x.
設(shè)三角形的頂角θ,則由余弦定理得cosθ=$\frac{(2x)^{2}+{x}^{2}-9}{2×2x×x}$=$\frac{5{x}^{2}-9}{4{x}^{2}}$,
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$,
根據(jù)公式三角形面積S=$\frac{1}{2}$absinθ=$\frac{1}{2}$×2x•2x•$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{2}$,
∴當(dāng) x2=5時,三角形面積有最大值.此時x=$\sqrt{5}$.
AB的長:2$\sqrt{5}$.
故選:A.
點評 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)條件設(shè)出變量,根據(jù)三角形的面積公式以及三角函數(shù)的關(guān)系是解決本題的關(guān)鍵,利用二次函數(shù)的性質(zhì)即可求出函數(shù)的最值,考查學(xué)生的運(yùn)算能力.運(yùn)算量較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | logab•logbc•logca=1 | B. | 函數(shù)f(x)=ex滿足f(a+b)=f(a)•f(b) | ||
C. | 函數(shù)f(x)=ex滿足f(a•b)=f(a)•f(b) | D. | 若xlog34=1,則4x+4-x=$\frac{10}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com