19.函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(x-1)$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,2]B.(1,2]C.[1,2]D.(1,2)

分析 由根式內(nèi)部的代數(shù)式大于等于0,對(duì)數(shù)式的真數(shù)大于0聯(lián)立不等式組得答案.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{4-2x≥0}\\{x-1>0}\end{array}\right.$,解得1<x≤2.
∴函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(x-1)$的定義域?yàn)椋?,2].
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.一塊各面都涂有油漆的正方體被鋸成64個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄穑購(gòu)闹腥我馊〕鲆粋(gè)小正方體,則取到恰有兩面涂有油漆的正方體的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知某圓柱的體積為V,若要使其表面積的值小其底面半徑應(yīng)為(  )
A.$\root{3}{V}$B.$\root{3}{\frac{V}{π}}$C.$\root{3}{4V}$D.$\root{3}{\frac{V}{2π}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x0∈(0,$\frac{π}{2}$),f(x0)=$\sqrt{3}$,若g(x)=1+2cos2x,求g(x0)的值;
(3)若h(x)=1+2cos2x+a,且方程f(x)-h(x)=0在[0,$\frac{π}{2}$]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.以下有關(guān)命題的說(shuō)法錯(cuò)誤的是( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.“a<b”是“a+c<b+c”的充要條件
D.命題$p:?{x_0}∈R,{e^{x_0}}≤0$為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0)上單調(diào)遞增,a=f(0.80.8),b=f(0.81.6),c=f(1.60.8),則a,b,c的大小關(guān)系是( 。
A.c<a<bB.a<c<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)={2^x}+\frac{k}{2^x}$是定義域?yàn)镽的奇函數(shù).
(1)求k的值,并判斷y=f(x)的單調(diào)性(不要求證明);
(2)若$f(x)>\frac{3}{2}$,求x的取值范圍;
(3)若$g(x)={4^x}+\frac{1}{4^x}+2mf(x)$在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x≤2\end{array}\right.$,則z=-2x+y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2且f($\frac{A}{2}$+$\frac{2π}{3}$)=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案