4.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0)上單調(diào)遞增,a=f(0.80.8),b=f(0.81.6),c=f(1.60.8),則a,b,c的大小關(guān)系是(  )
A.c<a<bB.a<c<bC.a<b<cD.c<b<a

分析 由條件即可得到f(x)在(0,+∞)上單調(diào)遞減,而根據(jù)指數(shù)函數(shù)y=0.8x和y=1.6x的圖象便可判斷0.80.8,0.81.6,1.60.8這幾個數(shù)的大小關(guān)系,從而由f(x)的單調(diào)性即可得出對應(yīng)函數(shù)值的大小關(guān)系,即得出a,b,c的大小關(guān)系.

解答 解:根據(jù)條件知,f(x)在(0,+∞)上單調(diào)遞減;
1>0.80.8>0.81.6,1.60.8>1;
∴1.60.8>0.80.8>0.81.6
∴f(1.60.8)<f(0.80.8)<f(0.81.6);
即c<a<b.
故選:A.

點評 考查偶函數(shù)的定義,偶函數(shù)在對稱區(qū)間上函數(shù)單調(diào)性的特點,根據(jù)指數(shù)函數(shù)的圖象比較函數(shù)值大小的方法,以及減函數(shù)定義的運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知命題p:x2-4x+3<0與q:x2-6x+8<0;若“p且q”是不等式2x2-9x+a<0成立的充分條件,則實數(shù)a的取值范圍是( 。
A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={0,1,2},集合B={0,2,4},則A∩B=(  )
A.{0,1,2}B.{0,2}C.{0,4}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.$f(x)=ax-\frac{1}{x},g(x)=lnx,a∈R$是常數(shù).
(Ⅰ)求曲線y=g(x)在點P(1,g(1))處的切線l.
(Ⅱ)是否存在常數(shù)a,使l也是曲線y=f(x)的一條切線.若存在,求a的值;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(x-1)$的定義域為( 。
A.(0,2]B.(1,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,AB是⊙O的直徑,點C是⊙O上的動點,過動點C的直線VC垂直于⊙O所在的平面,D、E分別是VA、VC的中點.
(1)若F∈BC試確定點F的位置,使VB∥平面EDF,并證明;
(2)證明:VB⊥DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.正項等比數(shù)列{an}中,前n項和為Sn,若S4=30,a3+a5=40,則數(shù)列{an}的前9項和等于( 。
A.100B.1024C.1022D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中為奇函數(shù)的是( 。
A.y=x•sinxB.y=x•cosxC.y=ln|x|D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)a∈R,函數(shù)f(x)=|x2+ax|
(Ⅰ)若f(x)在[0,1]上單調(diào)遞增,求a的取值范圍;
(Ⅱ)記M(a)為f(x)在[0,1]上的最大值,求M(a)的最小值.

查看答案和解析>>

同步練習冊答案