【題目】已知函數(shù).
(1)當(dāng)時,求的最小值;
(2)若在上為單調(diào)函數(shù),求實數(shù)的取值范圍.
【答案】(1)(2).
【解析】試題分析:
(1)根據(jù)導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性,并根據(jù)單調(diào)性求極值,進而可得最值。(2)將問題轉(zhuǎn)化為導(dǎo)函數(shù)在大于等于0或小于等于0解決,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值問題。
試題解析:
(1)當(dāng)時, ,
∴.
令,得或(舍去).
當(dāng)變化時, 的變化情況如下表:
|
| 2 |
|
| - | 0 | + |
| ↘ | 極小值 | ↗ |
由上表可得當(dāng)時, .
∴ 當(dāng)時,函數(shù)的最小值為.
(2)∵,
∴,
∵在上為單調(diào)函數(shù),
∴ 當(dāng)時, 或恒成立,
即或對恒成立,
∴或對恒成立.
令,則.
∴ 當(dāng)時, , 單調(diào)遞減,
又當(dāng) 時, ;當(dāng)時, ,
∴.
故當(dāng)在上為單調(diào)函數(shù)時,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在上的最大值為1,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為離心率為,兩準(zhǔn)線之間的距離為8,點在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的交點在橢圓上,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點,求;
(2)設(shè)圓與軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,試證明直線恒過一定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若直線與圓相交于, 兩點,求弦長;
(2)以該直角坐標(biāo)系的原點為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,圓和圓的交點為, ,求弦所在直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學(xué)生進入30秒跳繩決賽
(B)5號學(xué)生進入30秒跳繩決賽
(C)8號學(xué)生進入30秒跳繩決賽
(D)9號學(xué)生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標(biāo)原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x+l (a∈R),且f(x)≥0.
(I)求a;
( II)求證:當(dāng),n∈N*時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·武昌調(diào)研)如圖,在圓內(nèi)畫1條線段,將圓分成2部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.則
(1)在圓內(nèi)畫5條線段,將圓最多分割成________部分;
(2)在圓內(nèi)畫n條線段,將圓最多分割成________部分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com