【題目】已知函數(shù),.

1)若,判斷函數(shù)的單調(diào)性并說明理由;

2)若,求證:關(guān)的不等式上恒成立.

【答案】1)函數(shù)上單調(diào)遞減,理由見解析;(2)證明見解析.

【解析】

1)求出函數(shù)的導(dǎo)數(shù),分析導(dǎo)數(shù)在區(qū)間上的符號(hào),即可得出結(jié)論;

2)將所證不等式變形為,證明出,于是將不等式轉(zhuǎn)化為證明,通過證明出,將不等式轉(zhuǎn)化為,然后構(gòu)造函數(shù),利用單調(diào)性證明即可.

1)函數(shù)上單調(diào)遞減,理由如下:

依題意,,則.

當(dāng)時(shí),,故函數(shù)上單調(diào)遞減;

2)要證,即證,

即證.

設(shè),則.

當(dāng)時(shí),,所以上單調(diào)遞增,

所以,即.

故當(dāng)時(shí),,

故即證.

,.

由(1)可知,

上單調(diào)遞增.

所以,當(dāng)時(shí),,即,

所以,當(dāng)時(shí),,

所以只需證明,即證明.

設(shè),則.

所以上單調(diào)遞增,所以,所以原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)下列說法中,正確的命題是(

A.已知隨機(jī)變量服從正態(tài)分布,,則

B.以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是0.3

C.已知兩個(gè)變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,,則

D.若樣本數(shù)據(jù),,,的方差為2,則數(shù)據(jù),,的方差為16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),.

1)設(shè),假設(shè)上遞減,求的取值范圍;

2)假設(shè),求證:.

3)是否存在實(shí)數(shù),使得恒成立,假設(shè)存在,求出的取值范圍,假設(shè)不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

1)求函數(shù)的單調(diào)增區(qū)間;

2)令,且函數(shù)有三個(gè)彼此不相等的零點(diǎn),其中.

①若,求函數(shù)處的切線方程;

②若對(duì),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以15編號(hào),第袋取出個(gè)產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量_________;若次品所在的袋子的編號(hào)是,此時(shí)的重量_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)若點(diǎn)與點(diǎn)分別為曲線動(dòng)點(diǎn),求的最小值,并求此時(shí)的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,線段、都是圓的弦,且垂直且相交于坐標(biāo)原點(diǎn),如圖所示,設(shè)△的面積為,設(shè)△的面積為.

1)設(shè)點(diǎn)的橫坐標(biāo)為,用表示;

2)求證:為定值;

3)用、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時(shí)直線的方程;若沒有最小值,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案