1.用反證法證明命題“若自然數(shù)a,b,c的積為偶數(shù),則a,b,c中至少有一個偶數(shù)”時,對結(jié)論正確的反設(shè)為( 。
A.a,b,c中至多有一個偶數(shù)B.a,b,c都是奇數(shù)
C.a,b,c至多有一個奇數(shù)D.a,b,c都是偶數(shù)

分析 用反證法法證明數(shù)學(xué)命題時,應(yīng)先假設(shè)命題的反面成立,求出要證的命題的否定,即為所求.

解答 解:用反證法法證明數(shù)學(xué)命題時,應(yīng)先假設(shè)要證的命題的反面成立,即要證的命題的否定成立,
而命題:“自然數(shù)a,b,c中至少有一個是偶數(shù)”的否定為:“a,b,c中一個偶數(shù)都沒有”,
即a,b,c都是奇數(shù),
故選:B.

點評 本題主要考查用反證法法證明數(shù)學(xué)命題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知${∫}_{-a}^{a}$x2dx=18(a>0),則a的值為( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若對任意實數(shù)x,不等式x2-mx+(m-1)≥0恒成立
(1)求實數(shù)m的取值集合;
(2)設(shè)a,b是正實數(shù),且n=(a+$\frac{1}$)(mb+$\frac{1}{ma}$),求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線x=$\frac{π}{12}$是函數(shù)y=asin3x+cos3x的一條對稱軸,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在一個袋中放有10個同一型號的玩具,分別為紅色、白色或黃色,已知從中隨機(jī)摸出一個玩具,摸到紅色玩具的概率為$\frac{1}{5}$,摸到白色玩具的概率為$\frac{2}{5}$,則摸到白色或黃色玩具的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=ex(x2-bx)(b∈R)在區(qū)間[$\frac{1}{2}$,2]上存在單調(diào)遞增區(qū)間,則實數(shù)b的取值范圍是( 。
A.(-∞,$\frac{8}{3}$)B.(-∞,$\frac{5}{6}$)C.(-$\frac{3}{2}$,$\frac{5}{6}$)D.($\frac{8}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{i+3{i}^{2}}{1-{i}^{3}}$在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將一根長為10cm的細(xì)鐵絲用剪刀剪成兩段,然后再將每一段剪成等長的兩段,并用這四段鐵絲圍成一個矩形,則所圍成矩形的面積大于6cm2的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM
(Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E-AM-D的余弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案