2.橢圓9x2+y2=36的短軸長(zhǎng)為( 。
A.2B.4C.6D.12

分析 把橢圓的方程化為標(biāo)準(zhǔn)方程,求出它的短軸長(zhǎng)即可.

解答 解:橢圓9x2+y2=36的標(biāo)準(zhǔn)方程是
$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{36}$=1,
它是焦點(diǎn)在y軸上的橢圓,
且a=6,b=2;
∴它的短軸長(zhǎng)為2b=4.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知遞增等差數(shù)列{an}中,a1=1,a1,a4,a10成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•3n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=$\frac{x}{1+x}\sqrt{\frac{1+x}{1-x}}$的奇偶性是( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)A(2,4)在拋物線(xiàn)y2=2px上,且拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),若雙曲線(xiàn)的離心率為2,則該雙曲線(xiàn)的方程為${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)=x2-2kx+k在區(qū)間[0,1]上的最小值是0.25,則k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.則“x=2”是“x2-3x+2=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.偶函數(shù)f(x)滿(mǎn)足f(x+4)=f(x),且f(x)=$\left\{\begin{array}{l}{{3}^{x},1<x<2}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,設(shè)a=f(-9.3),b=f(-2.8),c=f(-7.3),則a,b,c的大小關(guān)系為(  )
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,∠AOP=$\frac{π}{3}$,Q點(diǎn)與P點(diǎn)關(guān)于y軸對(duì)稱(chēng),P,Q都為角的終邊與單位圓的交點(diǎn),求:
(1)P點(diǎn)坐標(biāo);
(2)∠AOQ的正弦函數(shù)值、余弦函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.己知橢圓方程C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),經(jīng)過(guò)點(diǎn)(1,$\frac{\sqrt{2}}{2}$),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓方程;
(2)過(guò)橢圓右頂點(diǎn)的兩條斜率乘積為-$\frac{1}{2}$的直線(xiàn)分別交橢圓于M,N兩點(diǎn),試問(wèn):直線(xiàn)MN是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出此定點(diǎn),若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案