分析 由題意求出p,得到拋物線(xiàn)的準(zhǔn)線(xiàn)方程,進(jìn)一步求出雙曲線(xiàn)的半焦距,結(jié)合離心率求得a,再由隱含條件求出b,則雙曲線(xiàn)方程可求.
解答 解:∵點(diǎn)A(2,4)在拋物線(xiàn)y2=2px上,
∴16=4p,即p=4.
∴拋物線(xiàn)的準(zhǔn)線(xiàn)方程為x=-2.
又拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),
則c=2,而$e=\frac{c}{a}=2$,∴a=1,
則b2=c2-a2=4-1=3.
∴雙曲線(xiàn)方程為${x}^{2}-\frac{{y}^{2}}{3}=1$.
故答案為:${x}^{2}-\frac{{y}^{2}}{3}=1$.
點(diǎn)評(píng) 本題考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查了雙曲線(xiàn)方程的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{c}{a}$ | B. | -$\frac{c}{a}$ | C. | ±$\frac{c}{a}$ | D. | -$\frac{a}{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α⊥γ,β⊥γ,則α∥β | B. | 若m⊥n,m⊥α,n∥β,則α∥β | ||
C. | 若m⊥α,m⊥β,則α∥β | D. | 若m∥n,m∥α,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |PP1|=|AA1|+|BB1| | B. | |PP1|=$\frac{1}{2}$|AB| | C. | |PP1|>$\frac{1}{2}$|AB| | D. | |PP1|$<\frac{1}{2}$|AB| |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com