已知銳角A,B滿足2tanA=tan(A+B),則tanB的最大值為( 。
A、2
2
B、
2
C、
2
2
D、
2
4
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:令tanA=x,tanB=y(x、y>0).則有
x+y
1-xy
=2x,故有 y=
x
1+2x2
=
1
1
x
+2x
,再利用基本不等式求得y的最大值.
解答: 解:已知銳角A,B滿足2tanA=tan(A+B),為簡單起見,
令tanA=x,tanB=y(x、y>0).
則有
x+y
1-xy
=2x,即 y=
x
1+2x2
=
1
1
x
+2x
1
2
2
=
2
4

當(dāng)且僅當(dāng)2x=
1
x
 時(shí),取等號,故y=tanB的最大值為
2
4
,
故選:D.
點(diǎn)評:本題主要考查兩角和的正切公式,基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax+2b在區(qū)間(0,1),(1,2)內(nèi)各有一個(gè)零點(diǎn),則z=
2a+b-4
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線l⊥平面α,①若直線m⊥l,則m∥α;②若m⊥α,則m∥l;③若m∥α,則m⊥l;④若m∥l,則m⊥α,上述判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+kx+4
x
(1≤x≤3),若對定義域內(nèi)的任意實(shí)數(shù)x1、x2、x3不等式f(x1)+f(x2)>f(x3)恒成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2)
,
b
=(x,4)
,且
a
b
,則|
a
-
b
|=(  )
A、5
3
B、3
5
C、2
5
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)三棱錐的三視圖如圖,其中俯視圖是斜邊長為2的等腰直角三角形,該三棱錐的外接球的半徑為
2
,則該三棱錐的體積為( 。
A、
2
3
B、
4
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若A、B、C、D是空間任意四點(diǎn),則有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
、
b
共線的充要條件;
③若
a
b
共線,則
a
b
所在直線平行;
④對空間任意一點(diǎn)P與不共線的三點(diǎn)A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P、A、B、C四點(diǎn)共面.其中不正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
3
B、π
C、
3
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)M到點(diǎn)F(0,1)的距離等于點(diǎn)M到直線y=-1的距離,點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)P為直線l:x-y-2=0上的點(diǎn),過點(diǎn)P做曲線C的兩條切線PA,PB,當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(Ⅲ)當(dāng)點(diǎn)P在直線l上移動時(shí),求|AF|•|BF|的最小值.

查看答案和解析>>

同步練習(xí)冊答案