【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù)).

(1)求直線l和曲線的普通方程;

(2)設(shè)直線l和曲線交于兩點(diǎn),求

【答案】(1);(2)1

【解析】

(1)直線的極坐標(biāo)方程為,利用互化公式能求出直線的普通方程,曲線的參數(shù)方程利用代入法消去參數(shù)能求出曲線的普通方程;(2)點(diǎn)的直角坐標(biāo)為,點(diǎn)在直線上,求出直線的參數(shù)方程,得到,由此利用韋達(dá)定理,結(jié)合直線參數(shù)方程的幾何意義,能求出的值.

(1)因?yàn)?/span>,所以

,得,因?yàn)?/span>消去t

所以直線l和曲線的普通方程分別為

(2)點(diǎn)的直角坐標(biāo)為,點(diǎn)在直線l上,設(shè)直線的參數(shù)方程:(t為參數(shù)),

對應(yīng)的參數(shù)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是中心為的菱形,

1)求證:平面;

2)若直線與平面所成的角為,求二面角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-2x.

(1)求f(x)的解析式,并畫出f(x)的圖象;

(2)設(shè)g(x)=f(x)-k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時,函數(shù)g(x)有一個零點(diǎn)?二個零點(diǎn)?三個零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計(jì)

55

合計(jì)

(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡”45歲為分界點(diǎn),由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不交于同一點(diǎn)的三條直線:4x+y-4=0,:mx+y=0,:x-my-4=0.

(1)當(dāng)這三條直線不能圍成三角形時,求實(shí)數(shù)m的值;

(2)當(dāng)都垂直時,求兩垂足間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為4.8米的水輪如圖所示,水輪圓心距離水面2.4米,已知水輪每60秒逆時針轉(zhuǎn)動一圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(圖中點(diǎn))開始計(jì)時,則(

A.點(diǎn)第一次到達(dá)最高點(diǎn)需要10

B.在水輪轉(zhuǎn)動的一圈內(nèi),有20秒的時間,點(diǎn)距離水面的高度不低于4.8

C.點(diǎn)距離水面的高度(米)與(秒)的函數(shù)解析式為

D.當(dāng)水輪轉(zhuǎn)動50秒時,點(diǎn)在水面下方,距離水面1.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點(diǎn)到左右兩個焦點(diǎn)的距離之和是4.

(1)求橢圓的方程;

(2)已知過的直線與橢圓交于兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案