15.設(shè)(1-2x)n=a0+a1x+a2x2+…+anxn(x∈N*),若a1+a2=30,則n=5.

分析 (1-2x)n=a0+a1x+a2x2+…+anxn=$1+{∁}_{n}^{1}(-2x)$+${∁}_{n}^{2}(-2x)^{2}$+…,可得a1+a2=-2+4×$\frac{n(n-1)}{2}$=30,化簡(jiǎn)解出即可得出.

解答 解:(1-2x)n=a0+a1x+a2x2+…+anxn=$1+{∁}_{n}^{1}(-2x)$+${∁}_{n}^{2}(-2x)^{2}$+…,
∴a1+a2=-2n+4×$\frac{n(n-1)}{2}$=30,化為n2-2n-15=0,n∈N*
解得n=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,直三棱柱A′B′C′-ABC,延長(zhǎng)CB到點(diǎn)D,使BD=BC,點(diǎn)E為A′D的中點(diǎn),∠ABC=90°,$AB=BC=\sqrt{2}$,A′A=2.
(1)證明:BE∥平面A′ACC′;
(2)求三棱錐A′-EB′C的體積
′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2cos(2ωx+$\frac{π}{3}$)-2cos2ωx+1(ω>0)的最小正周期為π.
(Ⅰ)求f(x)的對(duì)稱(chēng)中心;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若△ABC為銳角三角形且f(A)=0,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知三棱錐S-ABC,滿(mǎn)足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若該三棱錐外接球的半徑為$\sqrt{3}$,Q是外接球上一動(dòng)點(diǎn),則點(diǎn)Q到平面ABC的距離的最大值為( 。
A.3B.2C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在三棱柱FPE-ACB中,AC=BC=2,∠ACB=90°.△PAB為等邊三角形,PC⊥BC.
(I)求證:平面PBC⊥平面ABC;
(Ⅱ)求二面角B-AP-C的正弦值;并求三棱錐p-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)是周期為2的奇函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=lg(x+1),則$f(\frac{2016}{5})+lg18$=( 。
A.1B.2C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知參數(shù)方程為$\left\{\begin{array}{l}x={x_0}+tcosθ\\ y=tsinθ\end{array}\right.$(t為參數(shù))的直線(xiàn)l經(jīng)過(guò)橢圓$\frac{x^2}{3}+{y^2}=1$的左焦點(diǎn)F1,且交y軸正半軸于點(diǎn)C,與橢圓交于兩點(diǎn)A、B(點(diǎn)A位于點(diǎn)C上方).
(I)求點(diǎn)C對(duì)應(yīng)的參數(shù)tC(用θ表示);
(Ⅱ)若|F1B|=|AC|,求直線(xiàn)l的傾斜角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=12,a3•a5=4,則下列說(shuō)法正確的是( 。
A.{an}是單調(diào)遞減數(shù)列B.{Sn}是單調(diào)遞減數(shù)列
C.{a2n}是單調(diào)遞減數(shù)列D.{S2n}是單調(diào)遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知P是△ABC內(nèi)一點(diǎn),$\overrightarrow{PB}$+$\overrightarrow{PC}$+4$\overrightarrow{PA}$=$\overrightarrow{0}$,現(xiàn)將一粒黃豆撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案