【題目】已知不等式
(1)若,求不等式的解集;
(2)若已知不等式的解集不是空集,求實數(shù)的取值范圍。
【答案】(1);(2)
【解析】分析:(1)當(dāng)a=1時,把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求;
(2)利用函數(shù)圖像可知f(x)的最小值為1,故2a>1,由此求得求得a的取值范圍.
詳解:(1) 若a=1,不等式即 2|x﹣3|+|x﹣4|<2,①若x≥4,則3x﹣10<2,x<4,∴舍去.
②若3<x<4,則x﹣2<2,∴3<x<4.③若x≤3,則10﹣3x<2,∴.
綜上,不等式的解集為.
(2)設(shè)f(x)=2|x-3|+|x-4|,則
,
作出函數(shù)f(x)的圖象,如圖所示.
由圖象可知,f(x)≥1,
∴2a>1,a>,即a的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋兩次,記第一次出現(xiàn)的點數(shù)為 ,第二次出現(xiàn)的點數(shù)為 ,則事件“ ”的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,一個焦點F(﹣2,0),且長軸長與短軸長的比是 .
(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當(dāng) 最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】E為正四面體D﹣ABC棱AD的中點,平面α過點A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,則m、n所成角的余弦值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求證:數(shù)列{ }是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)設(shè)bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 試比較an與8Sn的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.求:
(1)“抽取的卡片上的數(shù)字滿足a+b=c”的概率;
(2)“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 在橢圓C: 上,F(xiàn)為右焦點,PF⊥垂直于x軸,A,B,C,D為橢圓上的四個動點,且AC,BD交于原點O.
(1)求橢圓C的方程;
(2)判斷直線l: 與橢圓的位置關(guān)系;
(3)設(shè)A(x1 , y1),B(x2 , y2)滿足 = ,判斷kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的最小值為0,不等式 的解集為 .
(1)求集合 ;
(2)設(shè)集合 ,若集合 是集合 的子集,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com