【題目】E為正四面體D﹣ABC棱AD的中點,平面α過點A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,則m、n所成角的余弦值為( 。
A.
B.
C.
D.
【答案】A
【解析】解:如圖,
由α∥平面ECB,且α∩平面ABC=m,α∩平面ACD=n,
結(jié)合面面平行的性質(zhì)可得:m∥BC,n∥EC,
∴∠BCE為m、n所成角,
設(shè)正四面體的棱長為2,則BE=CE= ,
則cos∠BCE= .
故正確答案為:A.
【考點精析】本題主要考查了異面直線及其所成的角的相關(guān)知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:,,且(n=1,2,...).記
集合.
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A.x∈R,f(x)≤f(x0)
B.x∈R,f(x)≥f(x0)
C.x∈R,f(x)≤f(x0)
D.x∈R,f(x)≥f(x0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:其中正確命題的序號是 .
①設(shè)a,b是非零實數(shù),若a<b,則ab2<a2b;
②若a<b<0,則 > ;
③函數(shù)y= 的最小值是2;
④若x,y是正數(shù), + =1,則x+2y的最小值為8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點的中心( , )
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①若正實數(shù)滿足,則的最小值是16;
②已知,則函數(shù)的最大值為;
③已知,且,則的最小值是36;
④若對任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x|.
(1)解不等式f(x)>﹣3;
(2)求函數(shù)y=f(x)的圖象與x軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前n項和,,且.
(1)求數(shù)列的通項公式;
(2)對于正整數(shù),已知成等差數(shù)列,求正整數(shù)的值;
(3)設(shè)數(shù)列前n項和是,且滿足:對任意的正整數(shù)n,都有等式成立.求滿足等式的所有正整數(shù)n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com