分析 由已知可得函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定義域R上為減函數(shù),則$\left\{\begin{array}{l}a-1<0\\ 2a+1>0\\ a-1+\frac{5}{2}≥2a+1\end{array}\right.$,解得a的取值范圍.
解答 解:若在定義域R上滿足對任意實數(shù)x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
則函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定義域R上為減函數(shù),
則$\left\{\begin{array}{l}a-1<0\\ 2a+1>0\\ a-1+\frac{5}{2}≥2a+1\end{array}\right.$,
解得:a∈(-$\frac{1}{2}$,$\frac{1}{2}$],
故答案為:(-$\frac{1}{2}$,$\frac{1}{2}$]
點評 本題考查的知識點是分段函數(shù)的應用,正確理解分段函數(shù)的單調(diào)性,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com